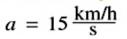
Cinematica in una dimensione

$$\begin{aligned}
 t_1 &= 0 \\
 v_1 &= 0
 \end{aligned}$$

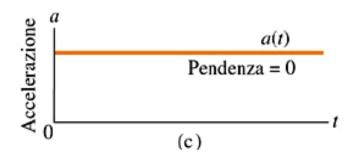
Accelerazione



$$t = 1.0 \text{ s}$$
$$v = 15 \text{ km/h}$$

$$t = 2.0 \text{ s}$$
$$v = 30 \text{ km/h}$$

a = costante



v(t)

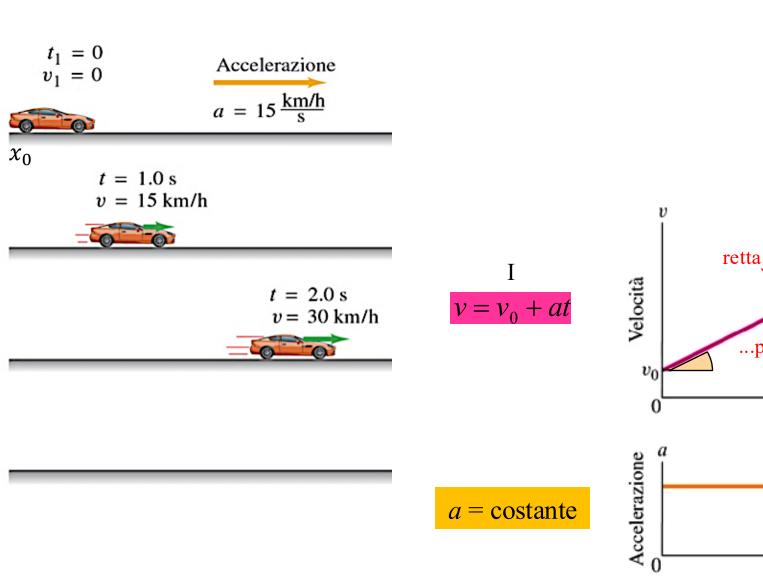
a(t)

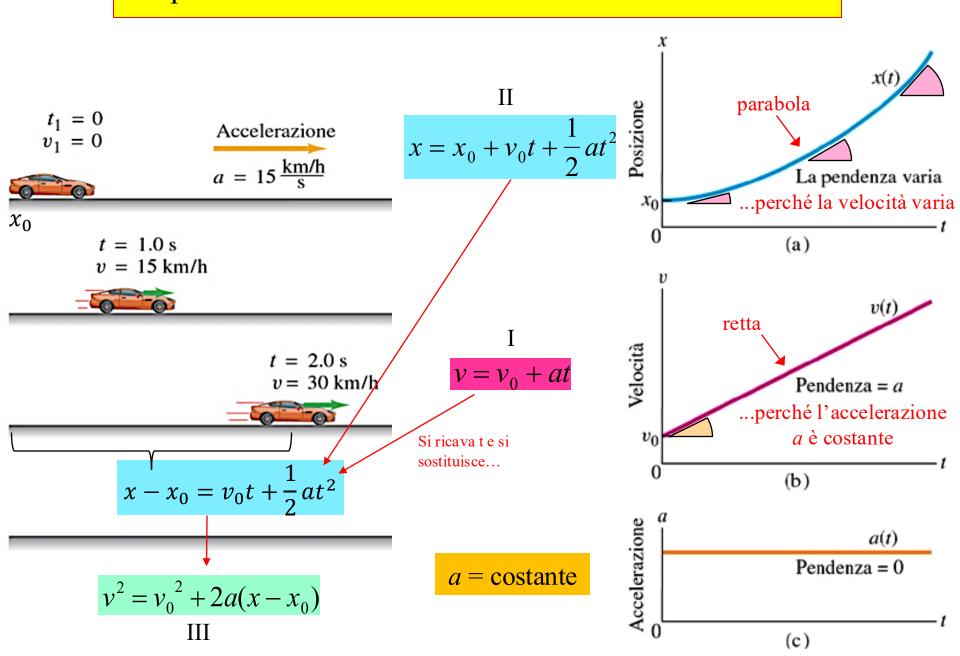
Pendenza = a
...perché l'accelerazione
a è costante

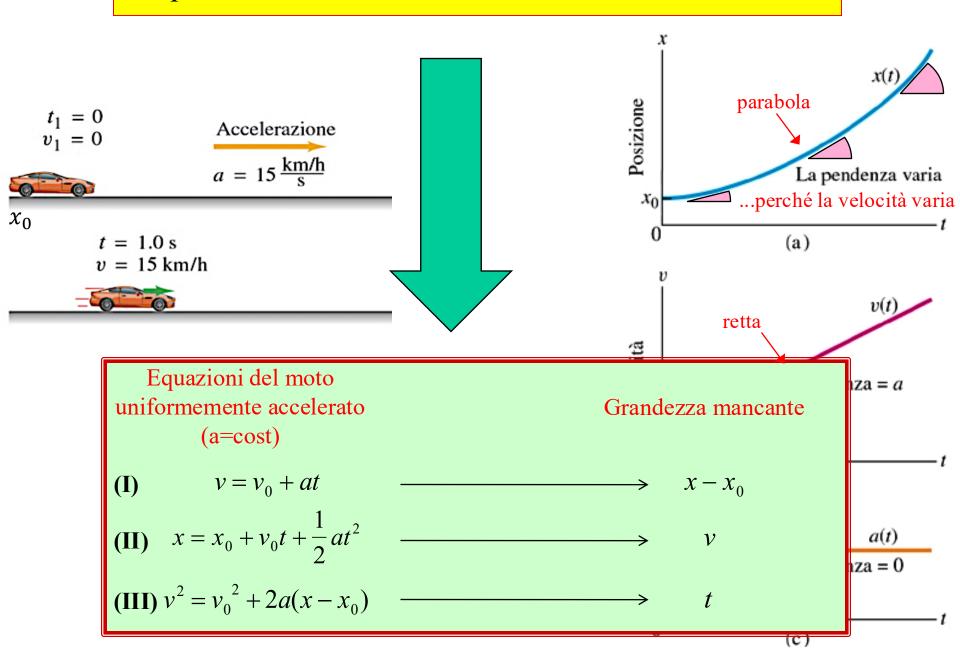
Pendenza = 0

(b)

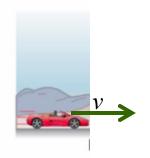
(c)





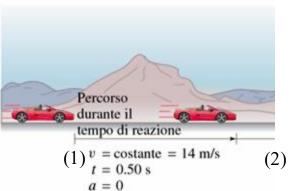


Determiniamo la minima distanza di frenata di un'automobile che viaggia ad una velocità costante v = 14m/s.



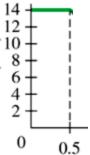
Distinguiamo 2 intervalli di tempo:

Determiniamo la minima distanza di frenata di un'automobile che viaggia ad una velocità costante v = 14m/s.

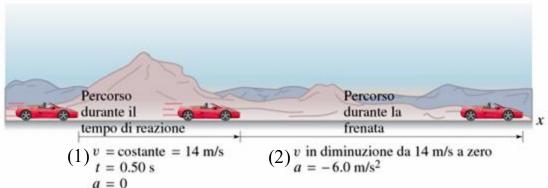


Distinguiamo 2 intervalli di tempo:

(1) **Tempo di reazione**: comincia quando il guidatore decide di premere il pedale del freno e finisce quando il piede tocca il pedale. In questo intervallo, che assumiamo sia 0.50s, l'accelerazione è nulla.

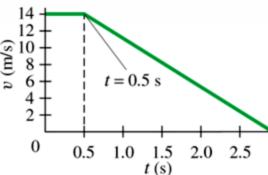


Determiniamo la minima distanza di frenata di un'automobile che viaggia ad una velocità costante v = 14m/s.

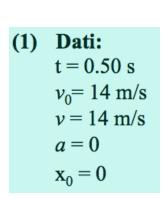


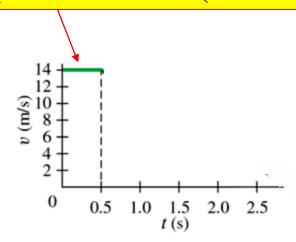
Distinguiamo 2 intervalli di tempo:

- (1) **Tempo di reazione**: comincia quando il guidatore decide di premere il pedale del freno e finisce quando il piede tocca il pedale. In questo intervallo, che assumiamo sia 0.50s, l'accelerazione è nulla.
- (2) **Tempo di frenata**: comincia quando l'auto inizia a frenare e termina quando l'auto è completamente ferma. Assumiamo che l'accelerazione in questo intervallo sia costante e pari ad a=-6 m/s².



Quale equazione scegliere per determinare lo spazio percorso durante il tempo di reazione? (il moto qui è uniforme)



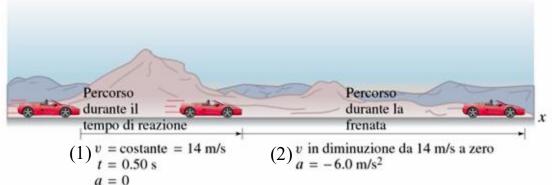


- incognita: x
- accelerazione nulla: a

Equazioni del moto
uniformemente accelerato
$$(a=\cos t)$$
(I) $v=v_0+at$ \longrightarrow $x-x_0$
Equazione del moto uniforme
(III) $x=x_0+v_0t$ $\frac{1}{2}xt^2$ \longrightarrow v

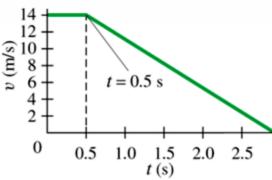
(IIII) $v^2=v_0^2+2a(x-x_0)$ \longrightarrow t

Determiniamo la minima distanza di frenata di un'automobile che viaggia ad una velocità costante v = 14m/s.



Distinguiamo 2 intervalli di tempo:

- (1) **Tempo di reazione**: comincia quando il guidatore decide di premere il pedale del freno e finisce quando il piede tocca il pedale. In questo intervallo, che assumiamo sia 0.50s, l'accelerazione è nulla.
- (2) **Tempo di frenata**: comincia quando l'auto inizia a frenare e termina quando l'auto è completamente ferma. Assumiamo che l'accelerazione in questo intervallo sia costante e pari ad a=-6 m/s².



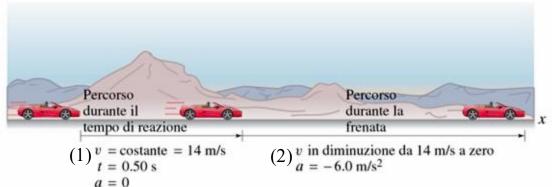
Soluzione

- (1) **Spazio percorso durante il tempo di reazione**: occorre utilizzare l'equazione II del moto uniformemente accelerato (con a=0 in questo caso): $x = 0 + v_0 t = (14m/s)(0.50s) = 7.0m$
- (1) Dati: t = 0.50 s $v_0 = 14 \text{ m/s}$ v = 14 m/s a = 0 $x_0 = 0$

Incognita:

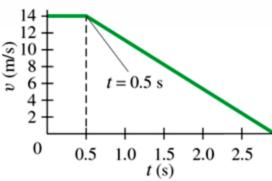
X

Determiniamo la minima distanza di frenata di un'automobile che viaggia ad una velocità costante v = 14m/s.



Distinguiamo 2 intervalli di tempo:

- (1) **Tempo di reazione**: comincia quando il guidatore decide di premere il pedale del freno e finisce quando il piede tocca il pedale. In questo intervallo, che assumiamo sia 0.50s, l'accelerazione è nulla.
- (2) **Tempo di frenata**: comincia quando l'auto inizia a frenare e termina quando l'auto è completamente ferma. Assumiamo che l'accelerazione in questo intervallo sia costante e pari ad a=-6 m/s².



Soluzione

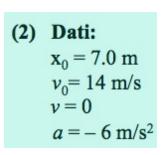
- (1) Spazio percorso durante il tempo di reazione: occorre utilizzare l'equazione II del moto uniformemente accelerato (con a=0 in questo caso): $x = 0 + v_0 t = (14m/s)(0.50s) = 7.0m$
- (2) Spazio totale percorso:

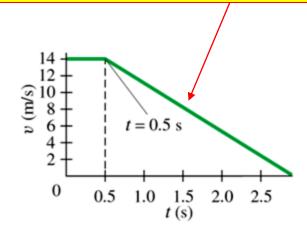
(1) Dati: t = 0.50 s $v_0 = 14 \text{ m/s}$ v = 14 m/s v = 14 m/s a = 0 a = 0 a = 0 a = 0 a = 0 a = 0 a = 0a = 0

Incognita:

X

Quale equazione scegliere per determinare lo spazio percorso durante la decelerazione?





- incognita: x
- grandezza mancante: t

Equazioni del moto uniformemente accelerato

$$(I) v = v_0 + at$$

(II)
$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

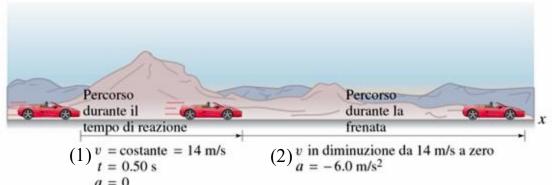
(III)
$$v^2 = v_0^2 + 2a(x - x_0)$$
 —

Grandezza mancante

$$x-x_0$$

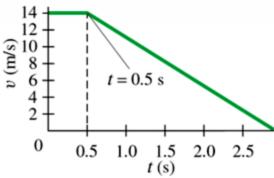
t

Determiniamo la minima distanza di frenata di un'automobile che viaggia ad una velocità costante v = 14m/s.



Distinguiamo 2 intervalli di tempo:

- (1) **Tempo di reazione**: comincia quando il guidatore decide di premere il pedale del freno e finisce quando il piede tocca il pedale. In questo intervallo, che assumiamo sia 0.50s, l'accelerazione è nulla.
- (2) **Tempo di frenata**: comincia quando l'auto inizia a frenare e termina quando l'auto è completamente ferma. Assumiamo che l'accelerazione in questo intervallo sia costante e pari ad a=-6 m/s².



Soluzione

- (1) Spazio percorso durante il tempo di reazione: occorre utilizzare l'equazione II del moto uniformemente accelerato (con a=0 in questo caso): $x = 0 + v_0 t = (14m/s)(0.50s) = 7.0m$
- (2) **Spazio totale percorso**: dal calcolo precedente abbiamo ricavato $x_0 = 7.0$ m, e stavolta utilizziamo l'equazione III del moto uniformemente accelerato, risolta però rispetto ad x:

) Dati: (2) Dati:
$$x_0 = 7.0 \text{ m}$$
 $v_0 = 14 \text{ m/s}$ $v = 14 \text{ m/s}$ $v = 0$ $a = 0$ $a = 0$ $a = -6 \text{ m/s}^2$

Incognita:

 $x = x_0 + \frac{v^2 - {v_0}^2}{2a} = 7.0m + \frac{0 - (14m/s)^2}{2(-6.0m/s^2)} = 7.0m + \frac{-196m^2/s^2}{-12m/s^2} = 7.0m + 16m = 23m$

Dall'equazione III del moto uniformemente accelerato notiamo che la **distanza di frenata**, cioè lo spazio totale $(x - x_0)$ percorso dall'auto dal momento in cui si preme il freno fino all'arresto completo del'auto, aumenta proporzionalmente al **quadrato** della velocità iniziale, ossia in maniera **non lineare**: andando a velocità doppia occorrerà quindi una distanza di frenata quattro volte maggiore, e così via...

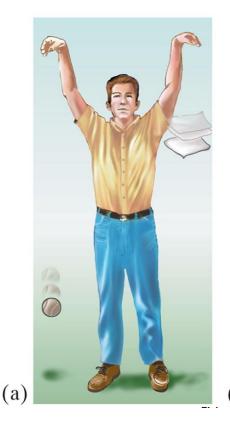
$$v^{2} = v_{0}^{2} + 2a(x - x_{0}) \longrightarrow x = x_{0} + \frac{v^{2} - v_{0}^{2}}{2a} \xrightarrow{v=0} x - x_{0} = \frac{-v_{0}^{2}}{2a}$$

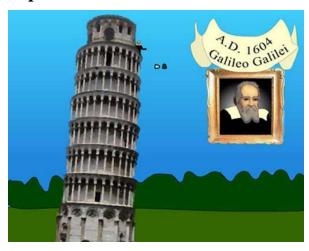
E' dunque consigliabile, per chi guida, tenerne conto per la valutazione della corretta distanza di sicurezza da tenere rispetto al veicolo che ci precede, al fine di evitare spiacevoli "inconvenienti"...

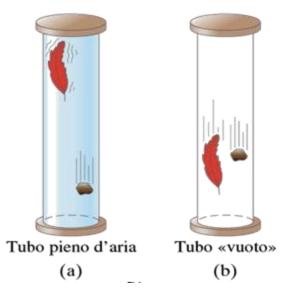
Accelerazione nel moto di caduta libera

Uno degli esempi più comuni di moto uniformemente accelerato unidimensionale è quello di un oggetto lasciato libero di cadere in prossimità della superficie terrestre.

Galileo fu il primo a rendersi conto che non è vero che gli oggetti più pesanti cadono più velocemente di quelli più leggeri e ad ipotizzare che, in assenza di aria o di altre resistenze, tutti gli oggetti cadrebbero con la stessa accelerazione costante.





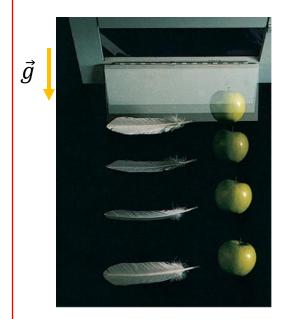


Accelerazione nel moto di caduta libera

https://www.youtube.com/watch?v=4GJg-6AHSt8

CADUTA DI OGGETTI nell'aria nel vuoto

Accelerazione di Gravità g



Da Newton in poi sappiamo che l'accelerazione costante in gioco nel moto di caduta libera è l'accelerazione di gravità \mathbf{g} , che – in assenza di resistenza dell'aria – è effettivamente indipendente dalle caratteristiche dell'oggetto che cade (massa, densità, forma, etc.). Al livello del mare $\mathbf{g} = 9.8 \text{ m/s}^2$.

Per gli oggetti in caduta libera possiamo dunque utilizzare le equazioni del moto uniformemente accelerato tenendo conto che:

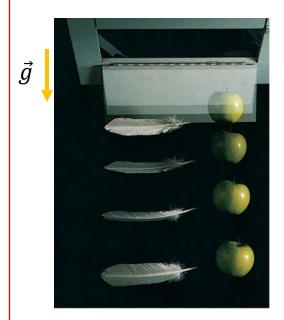
- 1) la direzione del moto è collocata stavolta lungo l'asse verticale y
- 2) l'accelerazione in caduta libera risulta *negativa* (a causa del suo verso non del suo modulo, che è ovviamente positivo) cosicchè possiamo riscrivere le equazioni I, II e III del moto uniformemente accelerato nella seguente forma:

asse y

Equazioni del moto di oggetti in caduta libera (a = -g = cost)

I)
$$v = v_0 - gt$$
 II) $y - y_0 = v_0 t - \frac{1}{2}gt^2$ III) $v^2 = v_0^2 - 2g(y - y_0)$

Accelerazione di Gravità g



Da Newton in poi sappiamo che l'accelerazione costante in gioco nel moto di caduta libera è l'accelerazione di gravità \mathbf{g} , che – in assenza di resistenza dell'aria – è effettivamente indipendente dalle caratteristiche dell'oggetto che cade (massa, densità, forma, etc.). Al livello del mare $\mathbf{g} = 9.8 \text{ m/s}^2$.

Per gli oggetti in caduta libera possiamo dunque utilizzare le equazioni del moto uniformemente accelerato tenendo conto che:

- 1) la direzione del moto è collocata stavolta lungo l'asse verticale y
- 2) l'accelerazione in caduta libera risulta *negativa* (a causa del suo verso non del suo modulo, che è ovviamente positivo) cosicchè possiamo riscrivere le equazioni I, II e III del moto uniformemente accelerato nella seguente forma:

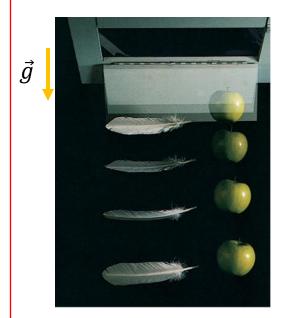
asse y

Equazioni del moto di oggetti in caduta libera (a = +g = cost)

I)
$$v = v_0 + gt$$
 II) $y - y_0 = v_0 t + \frac{1}{2}gt^2$ III) $v^2 = v_0^2 + 2g(y - y_0)$

Se invece **invertiamo** il verso positivo dell'asse y in modo che quest'ultimo punti verso il basso, l'accelerazione di gravità diventa *positiva* e il segno **meno** nelle equazioni diventa nuovamente un segno **più**... negli esercizi si può ovviamente scegliere il verso che ci viene più comodo al fine di risolvere il problema che ci viene posto...

Accelerazione di Gravità g



Da Newton in poi sappiamo che l'accelerazione costante in gioco nel moto di caduta libera è l'accelerazione di gravità \mathbf{g} , che – in assenza di resistenza dell'aria – è effettivamente indipendente dalle caratteristiche dell'oggetto che cade (massa, densità, forma, etc.). Al livello del mare $\mathbf{g} = 9.8 \text{ m/s}^2$.

Per gli oggetti in caduta libera possiamo dunque utilizzare le equazioni del moto uniformemente accelerato tenendo conto che:

- 1) la direzione del moto è collocata stavolta lungo l'asse verticale y
- 2) l'accelerazione in caduta libera risulta *negativa* (a causa del suo verso non del suo modulo, che è ovviamente positivo) cosicchè possiamo riscrivere le equazioni I, II e III del moto uniformemente accelerato nella seguente forma:

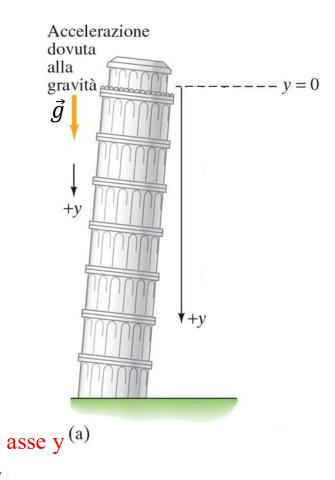
asse y

Equazioni del moto di oggetti in caduta libera (a = +g = cost)

I)
$$v = v_0 + gt$$
 III) $y - y_0 = v_0 t + \frac{1}{2}gt^2$ III) $v^2 = v_0^2 + 2g(y - y_0)$

Dalla seconda equazione si vede subito quello che già ai suoi tempi aveva dimostrato anche Galileo, utilizzando per primo lo strumento matematico, e cioè che la distanza percorsa da un oggetto che cade $(y - y_0)$ risulta proporzionale al quadrato del tempo trascorso.

Vediamone un esempio...



Esempio 1: Caduta da una torre

Supponiamo che una palla sia lasciata cadere (v_0 =0) da una torre alta 70.0 m. Di quanto sarà caduta dopo 1.00, 2.00 e 3.00 secondi?

Assumiamo come verso positivo dell'asse y quello rivolto verso il basso (così a = g = +9.80 m/s²). Poniamo v_0 =0 e y_0 =0 e utilizziamo l'**equazione II** del moto in caduta libera: $y - y_0 = v_0 t + \frac{1}{2} g t^2 \square \quad y = \frac{1}{2} g t^2$

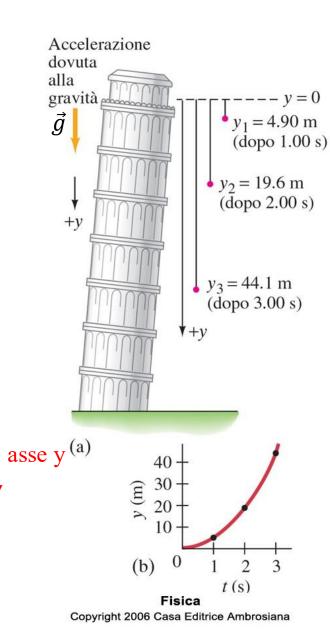
Avremo dunque, nei tre casi richiesti:

$$y_1 = \frac{1}{2}gt_1^2 = \frac{1}{2}(9.80m/s^2)(1.00s)^2 = 4.90m$$

$$y_2 = \frac{1}{2}gt_2^2 = \frac{1}{2}(9.80m/s^2)(2.00s)^2 = 19.6m$$

$$y_3 = \frac{1}{2}gt_3^2 = \frac{1}{2}(9.80m/s^2)(3.00s)^2 = 44.1m$$

FisicaCopyright 2006 Casa Editrice Ambrosiana



Esempio 1: Caduta da una torre

Supponiamo che una palla sia lasciata cadere (v_0 =0) da una torre alta 70.0 m. Di quanto sarà caduta dopo 1.00, 2.00 e 3.00 secondi?

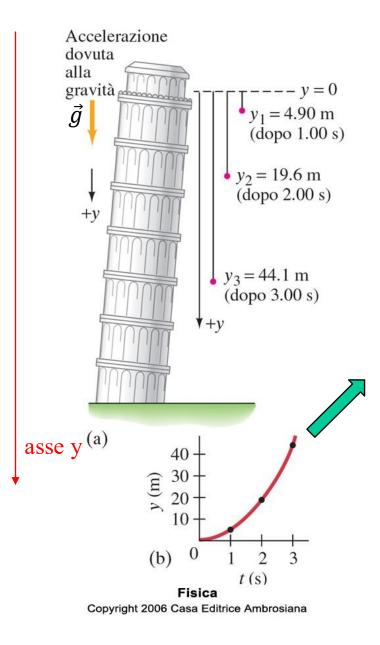
Assumiamo come verso positivo dell'asse y quello rivolto verso il basso (così a = g = +9.80 m/s²). Poniamo v_0 =0 e y_0 =0 e utilizziamo l'**equazione II** del moto in caduta libera: $y - y_0 = v_0 t + \frac{1}{2} g t^2 \square \quad y = \frac{1}{2} g t^2$

Avremo dunque, nei tre casi richiesti:

$$y_1 = \frac{1}{2}gt_1^2 = \frac{1}{2}(9.80m/s^2)(1.00s)^2 = 4.90m$$

$$y_2 = \frac{1}{2}gt_2^2 = \frac{1}{2}(9.80m/s^2)(2.00s)^2 = 19.6m$$

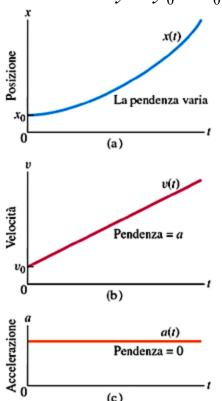
$$y_3 = \frac{1}{2}gt_3^2 = \frac{1}{2}(9.80m/s^2)(3.00s)^2 = 44.1m$$



Esempio 1: Caduta da una torre

Supponiamo che una palla sia lasciata cadere (v_0 =0) da una torre alta 70.0 m. Di quanto sarà caduta dopo 1.00, 2.00 e 3.00 secondi?

Assumiamo come verso positivo dell'asse y quello rivolto verso il basso (così a = g = +9.80 m/s²). Poniamo v_0 =0 e $y_0=0$ e utilizziamo l'**equazione II** del moto in caduta libera: $y - y_0 = v_0 t + \frac{1}{2}gt^2 \square \quad y = \frac{1}{2}gt^2$



(c)

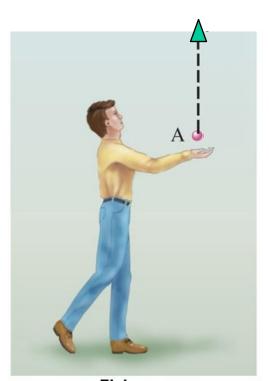
Quesito. Che valori di y avremmo trovato se invece di essere lasciata cadere (v_0 =0) la palla fosse stata lanciata verso il basso con una velocità iniziale di v_0 =3.0 m/s ? E quali sarebbero stati i valori finali della velocità nei tre casi richiesti? Provateci da soli....

Esempio 2:

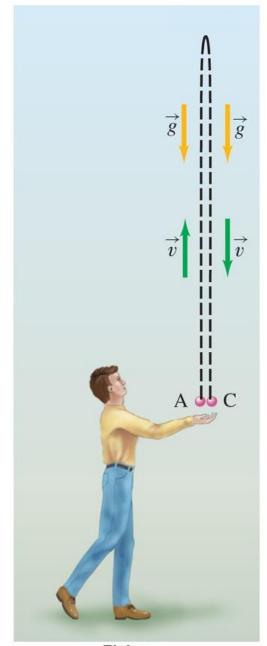
Immaginiamo adesso di **lanciare un oggetto verso l'alto** e di attendere che ci ricada in mano...

Sfatiamo due diffusi preconcetti

(1) E' vero che l'accelerazione e la velocità hanno sempre lo stesso verso? (2) E' vero che l'oggetto lanciato verso l'alto ha accelerazione zero nel punto più elevato della sua traiettoria verticale?



FisicaCopyright 2006 Casa Editrice Ambrosiana



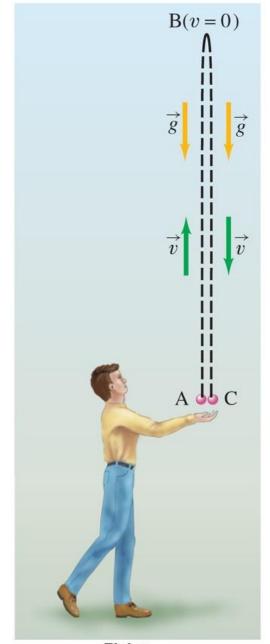
Fisica
Copyright 2006 Casa Editrice Ambrosiana

Esempio 2:

Immaginiamo adesso di **lanciare un oggetto verso l'alto** e di attendere che ci ricada in mano...

Sfatiamo due diffusi preconcetti

- (1) E' vero che l'accelerazione e la velocità hanno sempre lo stesso verso? (2) E' vero che l'oggetto lanciato verso l'alto ha accelerazione zero nel punto più elevato della sua trajettoria verticale?
- (1) Sappiamo già che non è vero dagli esempi precedenti sulle auto che decelerano. In questo caso la situazione è quella mostrata in figura. Ricordiamoci sempre che l'accelerazione non è l'effetto della variazione di velocità bensì la sua causa (in quanto sempre espressione di una forza, in questo caso quella gravitazionale).



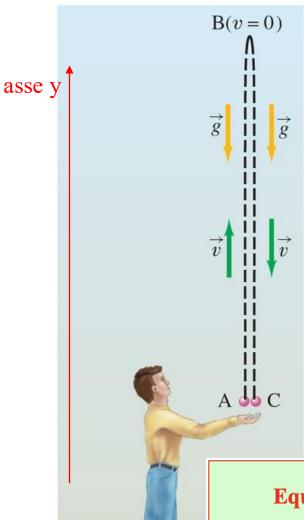
Fisica
Copyright 2006 Casa Editrice Ambrosiana

Esempio 2:

Immaginiamo adesso di **lanciare un oggetto verso l'alto** e di attendere che ci ricada in mano...

Sfatiamo due diffusi preconcetti

- (1) E' vero che l'accelerazione e la velocità hanno sempre lo stesso verso? (2) E' vero che l'oggetto lanciato verso l'alto ha accelerazione zero nel punto più elevato della sua traiettoria verticale?
- (1) Sappiamo già che non è vero dagli esempi precedenti sulle auto che decelerano. In questo caso la situazione è quella mostrata in figura. Ricordiamoci sempre che l'accelerazione non è l'effetto della variazione di velocità bensì la sua causa (in quanto sempre espressione di una forza, in questo caso quella gravitazionale).
- (2) Per quanto appena detto **non è vero neanche questo**: è la velocità che diventa nulla nel punto più elevato (il punto B in figura). **L'accelerazione invece** (essendo sempre espressione della forza gravitazionale) **mantiene sempre lo stesso modulo** pari a g, oltre che lo stesso verso. Del resto se nel punto B, per assurdo, si avesse a = 0, ciò implicherebbe che l'oggetto lanciato **rimarrebbe sospeso in aria** in quel punto, non potendosi più modificare la velocità che in quel punto, come già detto, è nulla.



Consideriamo adesso una palla lanciata verso l'alto con una velocità iniziale v_0 =15.0m/s e calcoliamo: (1) quanto in alto arriva la palla; (2) quanto a lungo rimane in aria la palla prima di ricadere in mano al lanciatore (punto C).

(1) Avendo scelto stavolta come verso positivo dell'asse y quello verso l'alto, l'accelerazione sarà pari ad $a = -g = -9.80 \text{ m/s}^2$. Conviene adesso utilizzare l'**equazione III** del moto uniformemente accelerato di un oggetto sottoposto alla sola accelerazione di gravità:

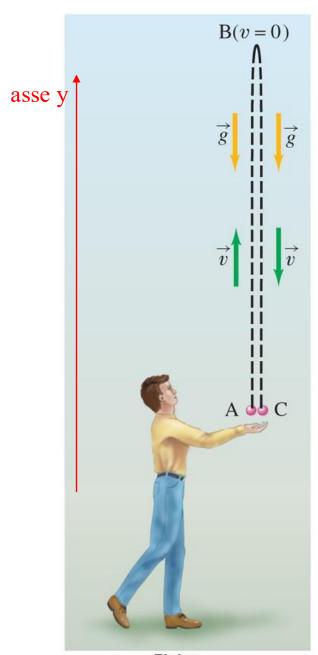
$$v^2 = v_0^2 - 2g(y - y_0)$$

dove sappiamo che $y_0 = 0$, $v_0 = 15.0$ m/s e v = 0 (nel punto B), mentre l'incognita è y.

Equazioni del moto di oggetti in caduta libera (a = -g = cost)

I)
$$v = v_0 - gt$$
 II) $y - y_0 = v_0 t - \frac{1}{2}gt^2$ III) $v^2 = v_0^2 - 2g(y - y_0)$

Fisica
Copyright 2006 Casa Editrice Ambrosiana



FisicaCopyright 2006 Casa Editrice Ambrosiana

Consideriamo adesso una palla lanciata verso l'alto con una velocità iniziale v_0 =15.0m/s e calcoliamo: (1) quanto in alto arriva la palla; (2) quanto a lungo rimane in aria la palla prima di ricadere in mano al lanciatore (punto C).

(1) Avendo scelto stavolta come verso positivo dell'asse y quello verso l'alto, l'accelerazione sarà pari ad $a = -g = -9.80 \text{ m/s}^2$. Conviene adesso utilizzare l'**equazione III** del moto uniformemente accelerato di un oggetto sottoposto alla sola accelerazione di gravità:

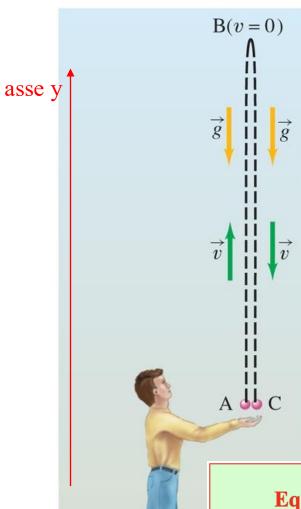
$$v^2 = v_0^2 - 2g(y - y_0)$$

dove sappiamo che $y_0 = 0$, $v_0 = 15.0$ m/s e v = 0 (nel punto B), mentre l'incognita è y.

Risolviamo dunque l'equazione rispetto ad y e sostituiamo:

$$y = \frac{v^2 - {v_0}^2}{-2g} = \frac{0 - (15m/s)^2}{-2(9.8m/s^2)} = 11.5m$$

Quindi nel punto B la palla raggiunge un'altezza di 11.5m al di sopra della mano.



Consideriamo adesso una palla lanciata verso l'alto con una velocità iniziale v_0 =15.0m/s e calcoliamo: (1) quanto in alto arriva la palla; (2) quanto a lungo rimane in aria la palla prima di ricadere in mano al lanciatore (punto C).

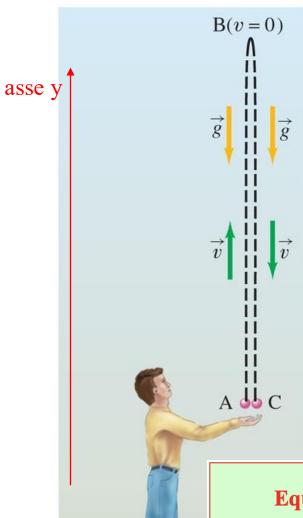
(2) Al secondo punto si può rispondere seguendo **due procedimenti diversi**. Potremmo ad esempio iniziare calcolando l'intervallo di tempo tra il momento del lancio $(t = 0, v_0 = 15 \text{m/s})$ e il momento in cui la palla raggiunge il punto B $(y_B = 11.5 \text{m e } v = 0)$. La nostra incognita è in questo caso il tempo t, che possiamo agevolmente ricavare dall'**equazione I** del moto di oggetti in caduta libera:

$$v = v_0 - gt$$

Equazioni del moto di oggetti in caduta libera (a = -g = cost)

I)
$$v = v_0 - gt$$
 II) $y - y_0 = v_0 t - \frac{1}{2}gt^2$ III) $v^2 = v_0^2 - 2g(y - y_0)$

Fisica
Copyright 2006 Casa Editrice Ambrosiana



Consideriamo adesso una palla lanciata verso l'alto con una velocità iniziale v_0 =15.0m/s e calcoliamo: (1) quanto in alto arriva la palla; (2) quanto a lungo rimane in aria la palla prima di ricadere in mano al lanciatore (punto C).

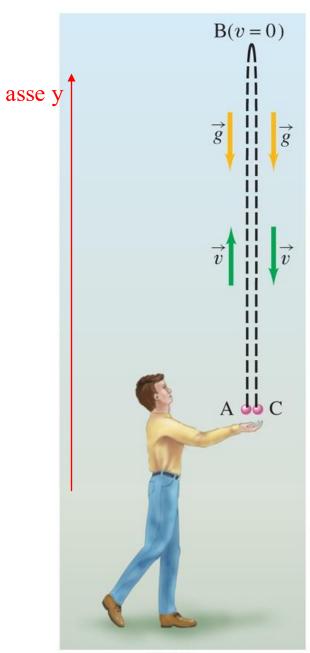
(2) Al secondo punto si può rispondere seguendo **due procedimenti diversi**. Potremmo ad esempio iniziare calcolando l'intervallo di tempo tra il momento del lancio $(t = 0, v_0 = 15 \text{m/s})$ e il momento in cui la palla raggiunge il punto B $(y_B = 11.5 \text{m e } v = 0)$. La nostra incognita è in questo caso il tempo t, che possiamo agevolmente ricavare dall'**equazione I** del moto di oggetti in caduta libera:

$$v = v_0 - gt$$
 \Box $t = \frac{v - v_0}{-g} = \frac{0 - 15m/s}{-9.80m/s^2} = 1.53s$

Equazioni del moto di oggetti in caduta libera (a = -g = cost)

I)
$$v = v_0 - gt$$
 II) $y - y_0 = v_0 t - \frac{1}{2}gt^2$ III) $v^2 = v_0^2 - 2g(y - y_0)$

FisicaCopyright 2006 Casa Editrice Ambrosiana



Fisica
Copyright 2006 Casa Editrice Ambrosiana

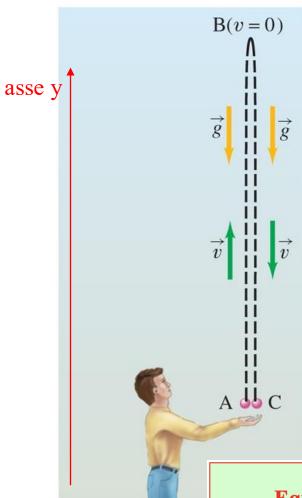
Consideriamo adesso una palla lanciata verso l'alto con una velocità iniziale v_0 =15.0m/s e calcoliamo: (1) quanto in alto arriva la palla; (2) quanto a lungo rimane in aria la palla prima di ricadere in mano al lanciatore (punto C).

(2) Al secondo punto si può rispondere seguendo **due procedimenti diversi**. Potremmo ad esempio iniziare calcolando l'intervallo di tempo tra il momento del lancio $(t = 0, v_0 = 15 \text{m/s})$ e il momento in cui la palla raggiunge il punto B $(y_B = 11.5 \text{m e } v = 0)$. La nostra incognita è in questo caso il tempo t, che possiamo agevolmente ricavare dall'**equazione I** del moto di oggetti in caduta libera:

$$v = v_0 - gt$$
 \Box $t = \frac{v - v_0}{-g} = \frac{0 - 15m/s}{-9.80m/s^2} = 1.53s$

...da cui, moltiplicando per due, si ricava il tempo totale in cui resta in aria la palla prima di ritornare in mano al lanciatore:

$$t = 1.53s \ \square 2 = 3.06s$$



Consideriamo adesso una palla lanciata verso l'alto con una velocità iniziale v_0 =15.0m/s e calcoliamo: (1) quanto in alto arriva la palla; (2) quanto a lungo rimane in aria la palla prima di ricadere in mano al lanciatore (punto C).

(2) **In alternativa**, potremmo invece considerare l'intervallo di tempo per l'intero moto da A a B e poi di nuovo a C in un unico passaggio usando **l'equazione II** del moto di oggetti in caduta libera, dato che y rappresenta la posizione della palla e non la distanza da essa percorsa. Essendo y = 0 nei punti A e C, avremo allora:

Equazioni del moto di oggetti in caduta libera (a = -g = cost)

I)
$$v = v_0 - gt$$
 II) $y - y_0 = v_0 t - \frac{1}{2}gt^2$ III) $v^2 = v_0^2 - 2g(y - y_0)$

Fisica
Copyright 2006 Casa Editrice Ambrosiana