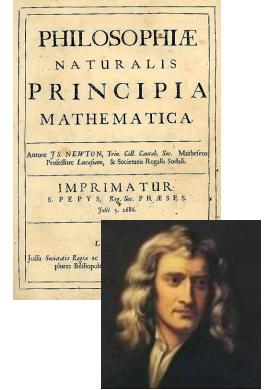


Le Tre Leggi della Dinamica di Newton

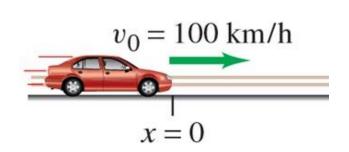
1. Ogni corpo persevera nel suo stato di quiete o di moto rettilineo uniforme fino a quando non agisca su di esso una forza risultante diversa da zero -> Sistemi di riferimento inerziali e non inerziali

2. La forza netta agente su un corpo è uguale al prodotto della sua massa m per l'accelerazione $\overset{-}{\alpha}$ assunta dal corpo:

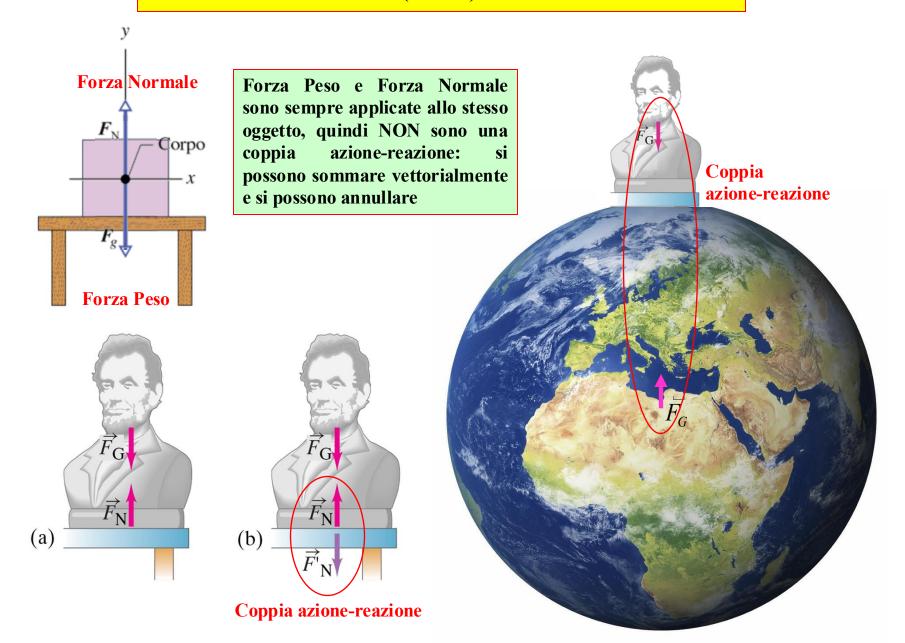
$$\overrightarrow{F}_{net} = \square \overrightarrow{F}_i = m\overrightarrow{a} (1) \longrightarrow \overrightarrow{a} = \frac{F_{net}}{m}$$



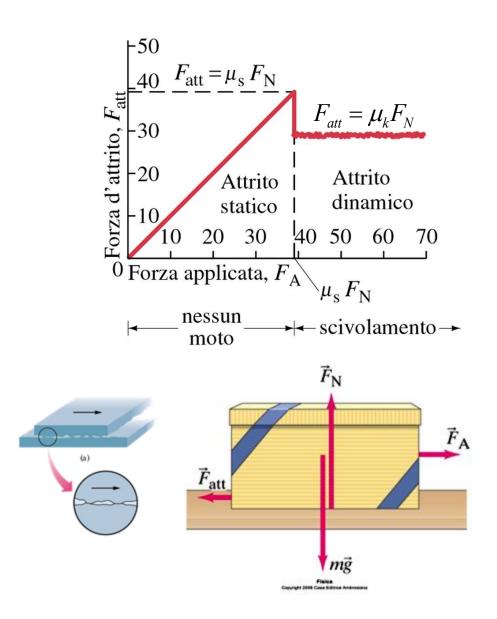
3. Ad ogni azione corrisponde una reazione uguale e contraria.



Forza di Gravità (Peso) e Forza Normale



Attrito Statico e Dinamico



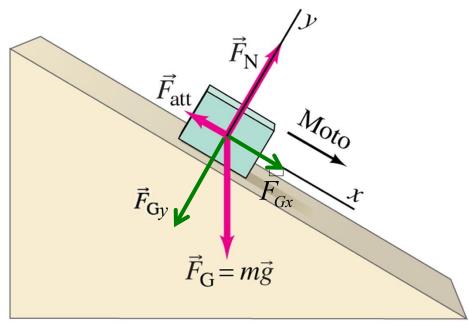
Alcuni valori del coefficiente di attrito radente.[1]

Superfici	$\mu_{\rm rs}$ (statico)	μ _{rd} (dinamico)
Legno - legno	0,50	0,30
Acciaio - acciaio	0,78	0,42
Acciaio - acciaio lubrificato	0,11	0,05
Acciaio - alluminio	0,61	0,47
Acciaio - ottone	0,51	0,44
Acciaio - teflon	0,04	0,04
Acciaio - ghiaccio	0,027	0,014
Acciaio - aria	0,001	0,001
Acciaio - piombo	0,90	n.d.
Acciaio - ghisa	0,40	n.d.
Acciaio - grafite	0,10	n.d.
Acciaio - plexiglas	0,80	n.d.
Acciaio - polistirene	0,50	n.d.
Rame - acciaio	1,05	0,29
Rame - vetro	0,68	0,53
Gomma - asfalto (asciutto)	1,0	0,8
Gomma - asfalto (bagnato)	0,7	0,6
Vetro - vetro	0,9 - 1,0	0,4
Legno sciolinato - neve	0,10	0,05

Dinamica su Piani inclinati

Sono molto frequenti problemi di dinamica che coinvolgono lo scivolamento di oggetti lungo **piani inclinati**. In questi casi la *competizione tra la forza di gravità e le forze di attrito* non avviene lungo la verticale ma lungo la **direzione del moto** degli oggetti sulla superficie inclinata, direzione che di solito si assume coincidere con **l'asse x** di un opportuno sistema di riferimento, il cui **asse y** è rivolto invece nella direzione perpendicolare a tale superficie:

In questo caso la **forza normale** non deve controbilanciare tutta la forza dell'oggetto peso ma solo componente y della forza peso, diretta lungo la *perpendicolare* al piano inclinato (asse y negativo). Sarà dunque questa componente della forza peso a determinare l'intensità della forza di attrito, la quale – a sua volta – contrasterà la componente x della forza peso, cioè quella diretta lungo il piano inclinato (asse x positivo), che è poi quella che genera il moto.



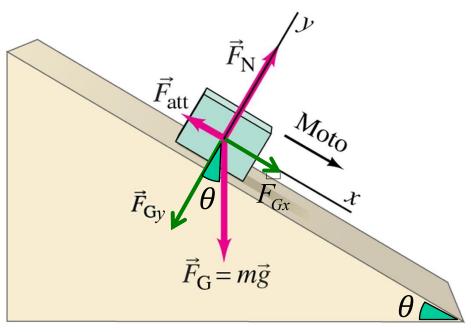
Fisica
Copyright 2006 Casa Editrice Ambrosiana

Dinamica su Piani inclinati

Sono molto frequenti problemi di dinamica che coinvolgono lo scivolamento di oggetti lungo **piani inclinati**. In questi casi la *competizione tra la forza di gravità e le forze di attrito* non avviene lungo la verticale ma lungo la **direzione del moto** degli oggetti sulla superficie inclinata, direzione che di solito si assume coincidere con **l'asse x** di un opportuno sistema di riferimento, il cui **asse y** è rivolto invece nella direzione perpendicolare a tale superficie:

Per capire come **scomporre** la forza peso nelle sue due componenti, rispettivamente parallela e perpendicolare al piano inclinato, si noti che da semplici considerazioni geometriche sui triangoli rettangoli simili risulta evidente che **l'angolo** θ **del piano inclinato** è uguale all'angolo compreso tra la forza peso e la sua **componente** y perpendicolare al piano. Quindi avremo:

$$\begin{cases} \vec{F}_{Gx} = \vec{F}_{G} \sin \theta \\ \vec{F}_{Gy} = -\vec{F}_{G} \cos \theta \end{cases}$$



FisicaCopyright 2006 Casa Editrice Ambrosiana

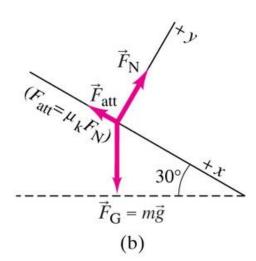
Consideriamo una **sciatrice** che abbia appena iniziato a scendere su una pista con una pendenza di 30°. Supponendo che il *coefficiente di attrito dinamico* sia 0.10, calcolare (a) la sua **accelerazione** e (b) la **velocità** che avrà raggiunto dopo 4.0s.

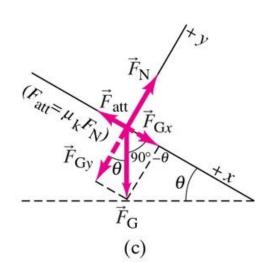
(a) Innanzitutto **scomponiamo** la forza peso nelle sue componenti lungo i due assi x e y:

$$F_{Gx} = mg\sin\theta$$
 e $F_{Gy} = -mg\cos\theta$

In accordo con la seconda legge della dinamica, la componente diretta lungo l'**asse** *x* contribuirà a determinare l'**accelerazione** della sciatrice, mentre quella diretta lungo l'**asse** *y* sarà uguale ed opposta alla forza normale (non essendoci moto lungo l'asse *y*):

$$\begin{cases} \sum_{i} F_{xi} = ma_{x} \rightarrow F_{Gx} + F_{att,x} = ma_{x} \rightarrow ma_{x} = mgsin\theta - \mu_{k}F_{N} \\ \sum_{i} F_{yi} = ma_{y} \rightarrow F_{N} + F_{Gy} = 0 \rightarrow F_{N} = mgcos\theta \end{cases}$$





Consideriamo una **sciatrice** che abbia appena iniziato a scendere su una pista con una pendenza di 30°. Supponendo che il *coefficiente di attrito dinamico* sia 0.10, calcolare (a) la sua **accelerazione** e (b) la **velocità** che avrà raggiunto dopo 4.0s.

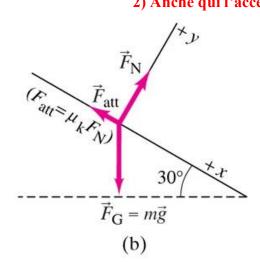
(a) Innanzitutto **scomponiamo** la forza peso nelle sue componenti lungo i due assi x e y:

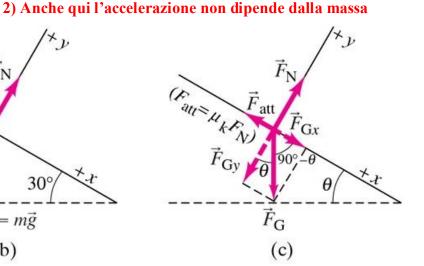
$$F_{Gx} = mg\sin\theta$$
 e $F_{Gy} = -mg\cos\theta$

In accordo con la seconda legge della dinamica, la componente diretta lungo l'**asse** *x* contribuirà a determinare l'**accelerazione** della sciatrice, mentre quella diretta lungo l'**asse** *y* sarà uguale ed opposta alla forza normale (non essendoci moto lungo l'asse *y*):

$$\begin{cases} \sum_{i} F_{xi} = ma_x \rightarrow F_{Gx} + F_{att,x} = ma_x \rightarrow ma_x = mgsin\theta - \mu_k F_N \\ \sum_{i} F_{yi} = ma_y \rightarrow F_N + F_{Gy} = 0 \rightarrow F_N = mgcos\theta \end{cases} \xrightarrow{a_x = \frac{1}{m} (mgsin\theta - \mu_k mgcos\theta) = gsin30\Box - \mu_k gcos30\Box = 0.50g - (0.10)(0.866)g = 0.41g = 0.41 (9.8m/s^2) = 4.0m/s^2 \end{cases}$$
1) Il moto su piano inclinato riduce l'accelerazione di gravità

(a)



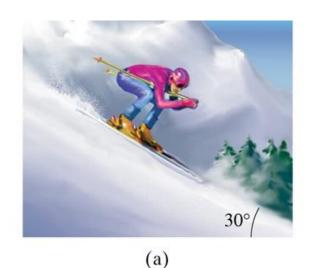


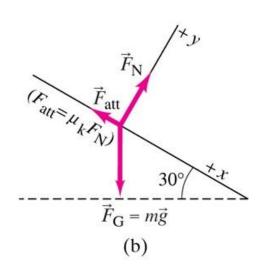
Consideriamo una **sciatrice** che abbia appena iniziato a scendere su una pista con una pendenza di 30°. Supponendo che il *coefficiente di attrito dinamico* sia 0.10, calcolare (a) la sua **accelerazione** e (b) la **velocità** che avrà raggiunto dopo 4.0s.

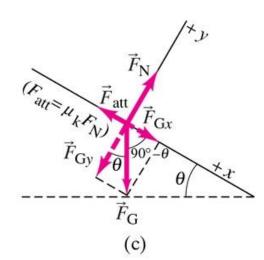
(b) Essendo l'accelerazione costante, per trovare la velocità della sciatrice dopo 4.0s basta usare una delle equazioni del moto unidimesionale uniformemente accelerato, tenendo conto che la velocità iniziale della sciatrice è nulla (poichè parte da ferma):

$$v_x = v_{x0} + a_x t \quad \Box \quad v_x = 0 + (4.0m/s^2)(4.0s) = 16m/s$$

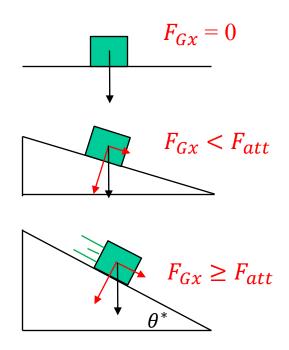
E' utile, in questi esercizi, risolvere dapprima il problema mediante **elaborazione algebrica** delle equazioni coinvolte mantenendo i simboli delle variabili (come si è fatto in questo caso) e solo alla fine sostituire i valori numerici, sia perchè così si ottengono equazioni risolutive valide in **generale** per problemi simili, sia perchè ci possono essere **semplificazioni** algebriche che facilitano l'ottenimento del risultato.

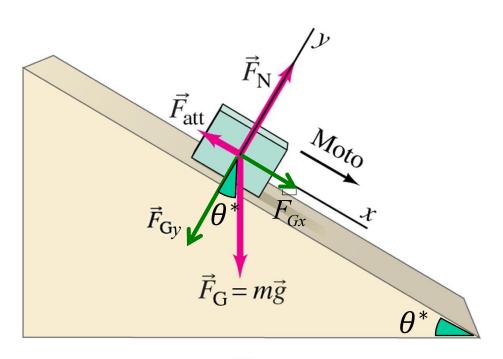






Consideriamo un altro esempio, con una scatola che si trovi inizialmente ferma su un piano con inclinazione nulla. Se facciamo crescere lentamente l'angolo di inclinazione θ del piano inclinato, ci sarà un angolo critico θ^* oltre il quale l'attrito statico F_{att} non sarà più in grado di controbilanciare la componente F_{Gx} della forza peso, che cresce al crescere dell'angolo θ , e la scatola comincerà a scivolare lungo il piano inclinato. Calcolare, mediante elaborazione algebrica, l'angolo critico θ^* in funzione delle altre grandezze fisiche in gioco.





Fisica
Copyright 2006 Casa Editrice Ambrosiana

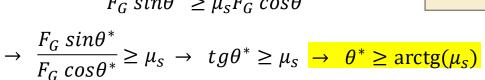
Consideriamo un altro esempio, con una **scatola** che si trovi inizialmente ferma su un piano con inclinazione nulla. Se facciamo crescere lentamente l'angolo di inclinazione θ del piano inclinato, ci sarà un angolo critico θ^* oltre il quale l'attrito statico F_{att} non sarà più in grado di controbilanciare la componente F_{Gx} della forza peso, che cresce al crescere dell'angolo θ , e la scatola comincerà a scivolare lungo il piano inclinato. Calcolare, mediante elaborazione algebrica, l'angolo critico $oldsymbol{ heta}^*$ in funzione delle altre grandezze fisiche in gioco.

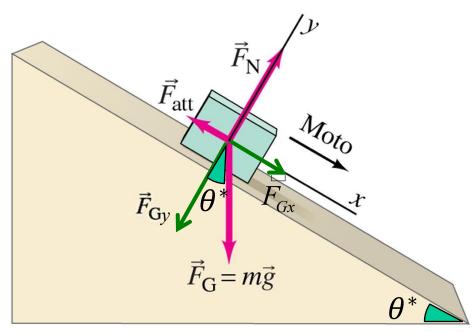
Da quanto abbiamo appreso finora, sappiamo che:

$$\begin{cases} \vec{F}_{Gx} = \vec{F}_{G}sin\theta \\ \vec{F}_{Gy} = -\vec{F}_{G}cos\theta \\ \vec{F}_{N} = \vec{F}_{G}cos\theta \end{cases}$$

La condizione per trovare l'angolo critico si ottiene imponendo che la componente F_{Gx} sia maggiore o uguale alla forza di attrito statico massimo, che sappiamo essere pari a $F_{att} = \mu_s F_N$. Quindi avremo:

$$F_G \sin \theta^* \ge \mu_s F_G \cos \theta^*$$





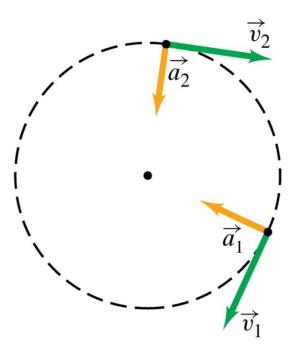
Fisica Copyright 2006 Casa Editrice Ambrosiana

Angolo critico di inclinazione per lo scivolamento di un oggetto, indipendentemente dalla massa di quest'ultimo

Dinamica del moto Circolare Uniforme

Studiando la cinematica del **moto circolare uniforme** di un punto materiale su una circonferenza di raggio r, abbiamo visto che il vettore velocità (di modulo costante e sempre tangente alla traiettoria) è sottoposto ad ogni istante ad un cambiamento di direzione a causa della presenza di una **accelerazione centripeta** diretta verso il centro del cerchio e di modulo costante $a_C = v^2/r$, dove – come sappiamo – la velocità si può anche calcolare conoscendo il **raggio** e il **periodo** di rotazione T (o la frequenza f): $v = \frac{2\pi r}{r} = 2\pi r f$

Da un **punto di vista dinamico** ciò significa che, per la seconda legge di Newton, sulla particella, che assumiamo di massa m, deve agire una **forza risultante non nulla** proporzionale alla massa e all'accelerazione della particella stessa.



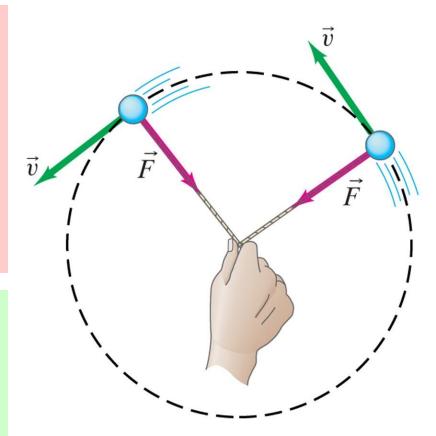
Dalla seconda legge della dinamica ricaviamo subito che il **modulo** di tale forza deve essere $F_C = ma_C \rightarrow F_C = mv^2 / r$, e che la sua **direzione** e il suo **verso** devono coincidere con quelli dell'accelerazione centripeta: anche questa forza punterà dunque verso il centro del cerchio, da cui il nome di **Forza Centripeta**.

La Forza Centripeta

NOTA IMPORTANTE:

La forza centripeta NON E' un nuovo tipo di forza che sbuca dal nulla nei moti circolari ma è una sorta di «soprannome» che diamo a quelle forze che, applicate a certi oggetti, li costringono in qualche modo a percorrere traiettorie curvilinee o circolari. Ad esempio, nella figura qui accanto, la forza centripeta che si esercita su una pallina che rotea a velocità costante è rappresentata dalla tensione della corda, tenuta dalla mano.

Non è dunque il moto circolare della pallina a creare la forza centripeta, come intuitivamente verrebbe da pensare, ma è la forza centripeta (la tensione) esercitata dalla corda che, puntando costantemente verso il centro del cerchio, costringe la pallina a modificare continuamente la sua velocità e quindi a ruotare lungo la sua traiettoria circolare!

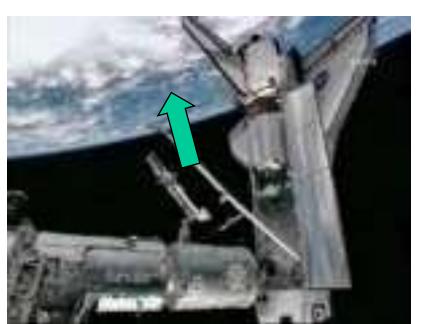


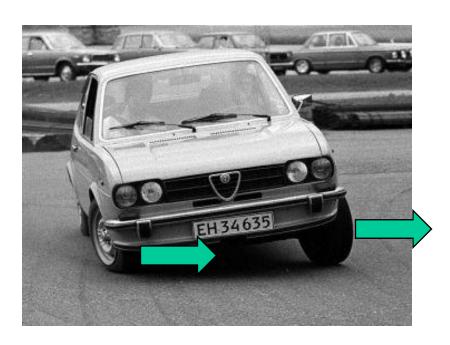
Altri esempi di Forza Centripeta

Percorrendo una curva in automobile

Da dove ha origine la forza centripeta che mantiene **l'auto** sulla curva impedendole di shandare?

Dalla forza di attrito delle ruote col terreno!





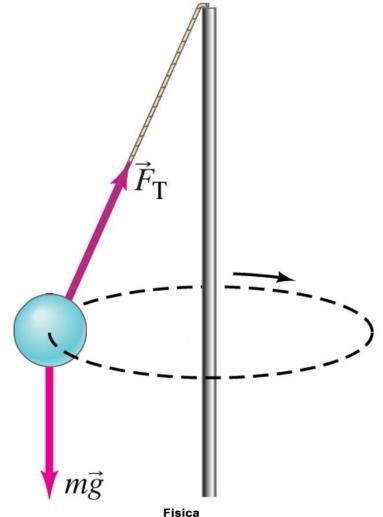
Orbitando intorno alla Terra

Da dove ha origine la forza centripeta che mantiene la **navicella Atlantis** in orbita attorno alla terra?

Dalla forza di attrazione gravitazionale della Terra!

La forza centripeta

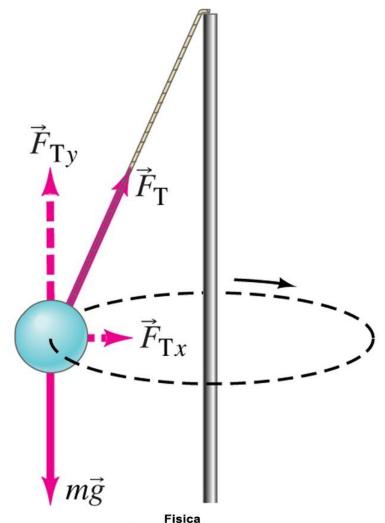
Una palla viene colpita e ruota attorno a un palo essendo legata alla sua estremità superiore (come in figura). In che direzione è rivolta l'accelerazione centripeta? Quale è la forza che la causa?



Copyright 2006 Casa Editrice Ambrosiana

Una palla viene colpita e ruota attorno a un palo essendo legata alla sua estremità superiore (come in figura). In che direzione è rivolta **l'accelerazione centripeta**? Quale è la forza che la causa?

Evidentemente stavolta è solo la componente orizzontale F_{Tx} della tensione della corda a rappresentare la forza centripeta, mentre quella verticale F_{Ty} serve a controbilanciare la forza peso della palla.



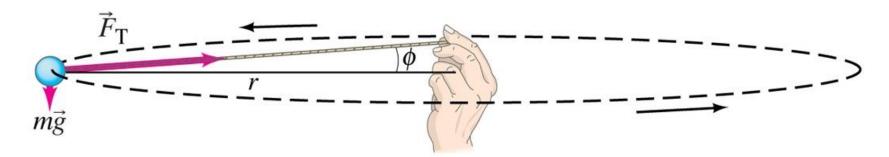
Copyright 2006 Casa Editrice Ambrosiana

Calcolare la forza centripeta che bisogna esercitare su una **corda** attaccata a una **palla** di massa m=0.150 kg per farla roteare su una circonferenza orizzontale di raggio 0.600 m, sapendo che la palla compie 2.00 giri al secondo (T=0.500 s).

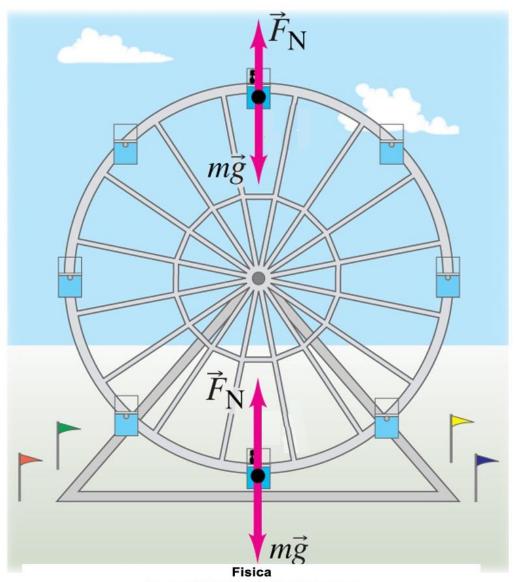
Il diagramma delle forze per la palla è mostrato nella figura qui sotto e si vede che su di essa agiscono la **forza peso**, di modulo mg e diretta verso il basso, e la **forza di tensione** di intensità F_T esercitata dalla corda in direzione della mano posta al centro della traiettoria circolare: sarà quest'ultima a rappresentare la **forza centripeta.**

In realtà sarebbe impossibile far roteare la palla mantenendola **perfettamente** orizzontale (cioè annullando l'angolo Φ), in quanto è necessaria una piccola componente verticale della tensione della corda per **equilibrare** la forza peso della pallina. Assumiamo dunque, in prima approssimazione, che il peso sia piccolo (anche se in realtà è pari ad 1.5N) e che Φ sia trascurabile, e applichiamo la seconda legge di Newton alla direzione radiale considerando come accelerazione quella centripeta:

$$F_c \equiv F_T = m \frac{v^2}{r} = \frac{m}{r} \left(\frac{2\pi r}{T}\right)^2 = \frac{4\pi^2 rm}{T^2} = \frac{4\pi^2 (0.600m)(0.150kg)}{(0.500s)^2} \approx 14N$$



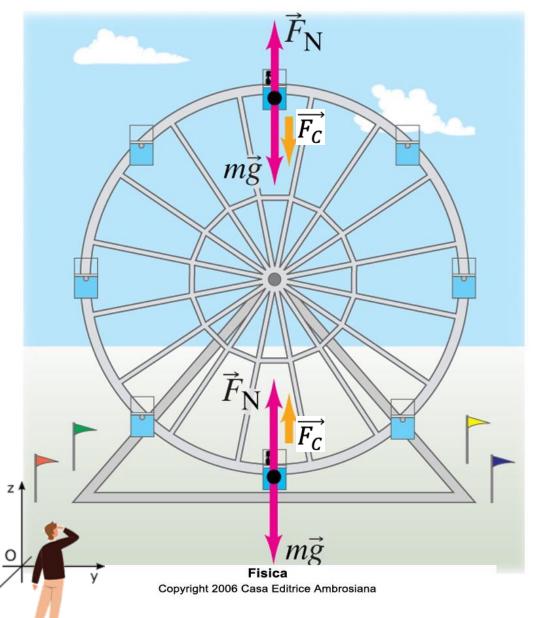
Un turista su una **ruota panoramica** si muove su una circonferenza verticale di raggio r a velocità costante v. La **forza normale** che il seggiolino esercita sul turista nel punto più alto della ruota è: (a) minore, (b) maggiore, (c) uguale a quella che il seggiolino esercita nel punto più basso della ruota?



Copyright 2006 Casa Editrice Ambrosiana

Un turista su una **ruota panoramica** si muove su una circonferenza verticale di raggio r a velocità costante v. La **forza normale** che il seggiolino esercita sul turista nel punto più alto della ruota è: (a) minore, (b) maggiore, (c) uguale a quella che il seggiolino esercita nel punto più basso della ruota?

Si può rispondere, anche se non è molto intuitivo, ragionando dal punto di vista di un osservatore posto nel sistema di riferimento terrestre. Per lui la forza centripeta non è, come già detto, una nuova forza che si aggiunge alle altre ma è rappresentata dalla risultante delle DUE uniche forze in gioco, la forza peso e la forza normale, e per definizione ci aspettiamo che sia negativa nel punto più alto e positiva in quello più basso (in quanto sempre diretta verso il centro della ruota)...



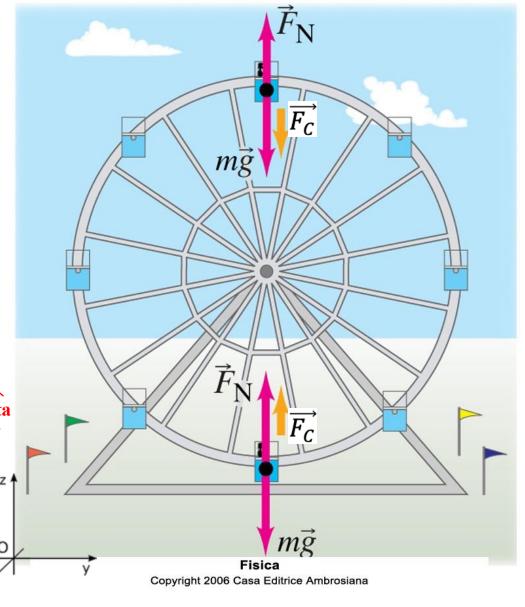
Un turista su una **ruota panoramica** si muove su una circonferenza verticale di raggio r a velocità costante v. La **forza normale** che il seggiolino esercita sul turista nel punto più alto della ruota è: (a) minore, (b) maggiore, (c) uguale a quella che il seggiolino esercita nel punto più basso della ruota?

Dunque avremo, lungo l'asse y:

Nel punto più alto: $\overrightarrow{F_N} - m\overrightarrow{g} \stackrel{\text{def}}{=} -\overrightarrow{F_C}$

Forza Centripeta

Nel punto più basso: $\overrightarrow{F_N} - m\overrightarrow{g} \stackrel{\text{def}}{=} \overrightarrow{F_C}$



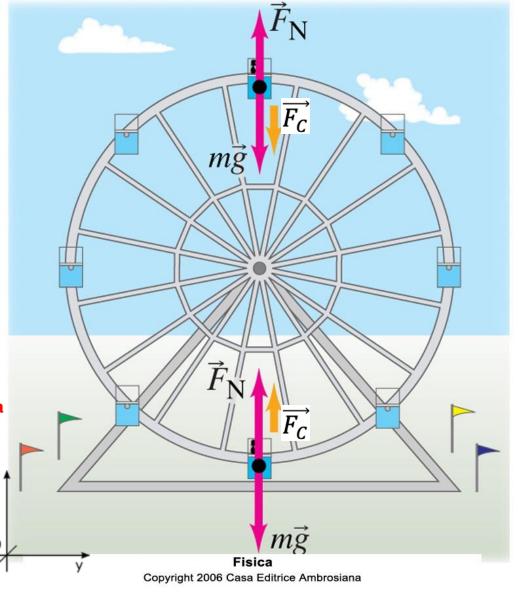
Un turista su una **ruota panoramica** si muove su una circonferenza verticale di raggio r a velocità costante v. La **forza normale** che il seggiolino esercita sul turista nel punto più alto della ruota è: (a) minore, (b) maggiore, (c) uguale a quella che il seggiolino esercita nel punto più basso della ruota?

...da cui, portando a destra la forza peso:

Nel punto più alto: $\overrightarrow{F_N} = m\overrightarrow{g} - \overrightarrow{F_C}$

Forza Centripeta

Nel punto più basso: $\overrightarrow{F_N} = m\overrightarrow{g} + \overrightarrow{F_C}$



Un turista su una **ruota panoramica** si muove su una circonferenza verticale di raggio r a velocità costante v. La **forza normale** che il seggiolino esercita sul turista nel punto più alto della ruota è: (a) **minore**, (b) maggiore, (c) uguale a quella che il seggiolino esercita nel punto più basso della ruota?

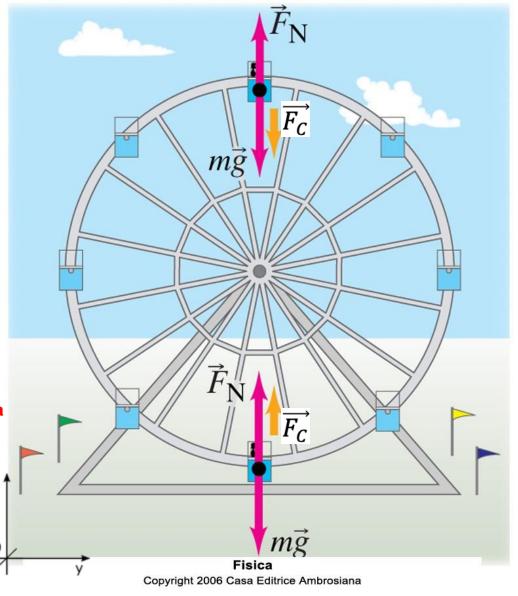
...da cui, portando a destra la forza peso:

Nel punto più alto: $\overrightarrow{F_N} = m\overrightarrow{g} - \overrightarrow{F_C}$

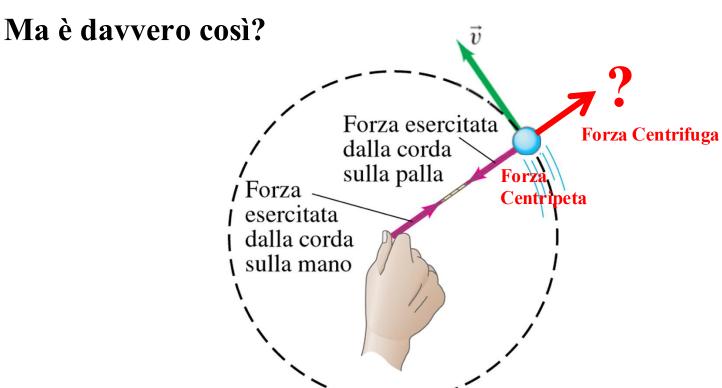
Forza Centripeta

Nel punto più basso: $\overrightarrow{F_N} = m\overrightarrow{g} + \overrightarrow{F_C}$

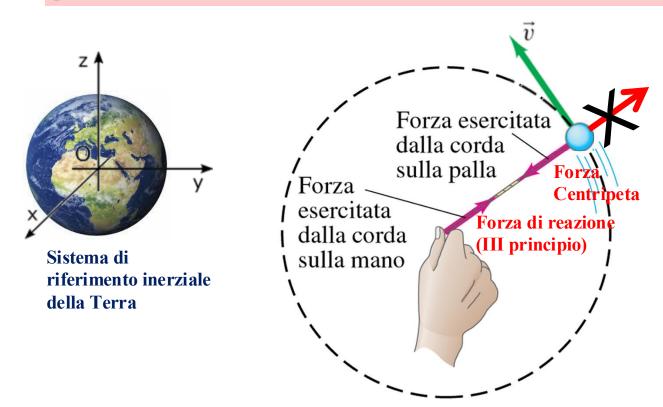
...quindi la forza normale nel punto più alto risulterà minore di quella nel punto più basso (come si evince anche dalla lunghezza dei relativi vettori)...



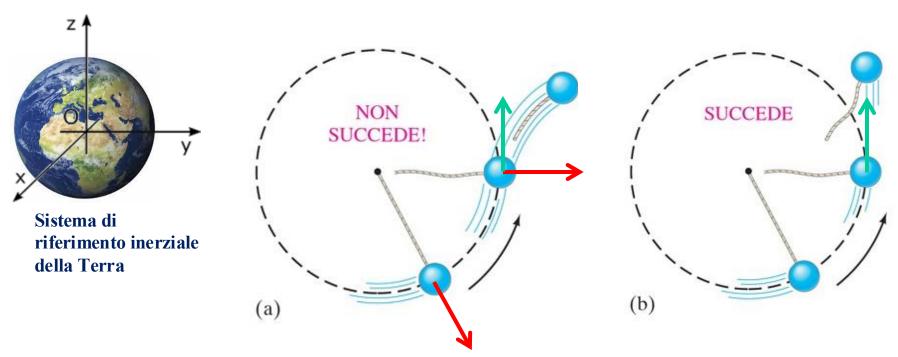
E' indubbio che, nell'esperimento della pallina che rotea a velocità costante (in modulo) a causa della tensione della corda trattenuta dalla nostra mano, la mano senta una forza, esercitata su di lei dalla corda, che punta verso l'esterno: questa forza appare uguale ed opposta a quella centripeta (esercitata dalla corda sulla palla) e per questo viene chiamata forza centrifuga. La nostra sensazione è che sia la pallina a generare questa forza nel suo tentativo di «sfuggire» verso l'esterno...



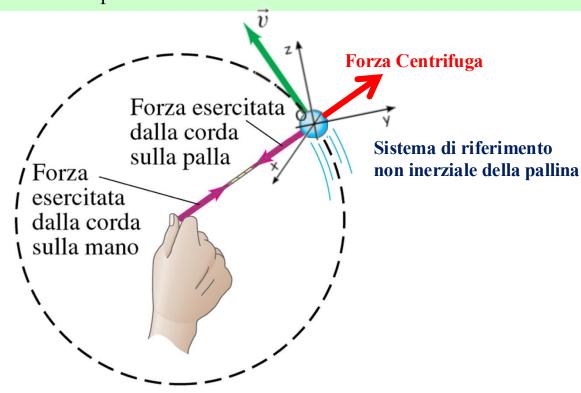
NO: in realtà, nel sistema di riferimento inerziale della Terra, l'unica forza agente sulla pallina è la forza centripeta esercitata dalla corda verso il centro della traiettoria circolare e non esiste nessuna forza reale indipendente diretta verso l'esterno: in questo sistema di riferimento terrestre la forza centrifuga avvertita dalla mano e generata su di essa dalla corda è solo una forza di reazione, per il terzo principio della dinamica, alla forza che la mano esercita sulla corda per trattenerla.



Il fatto che, nel sistema di riferimento della Terra, sulla pallina non agisca nessuna forza reale indipendente da quella centripeta e diretta verso l'esterno diventa evidente se ad un certo istante si molla la corda e si lascia libera la pallina di abbandonare la sua traiettoria circolare: una volta scomparsa la forza centripeta, se veramente esistesse una forza centrifuga indipendente, la pallina volerebbe via in direzione radiale come mostrato in figura (a); al contrario, sperimentalmente, essa segue invece, per inerzia, la direzione tangenziale alla traiettoria, come mostrato in figura (b), che è poi la direzione che il suo vettore velocità aveva all'istante in cui la mano ha mollato la presa (dunque la forza centrifuga scompare insieme a quella centripeta!).

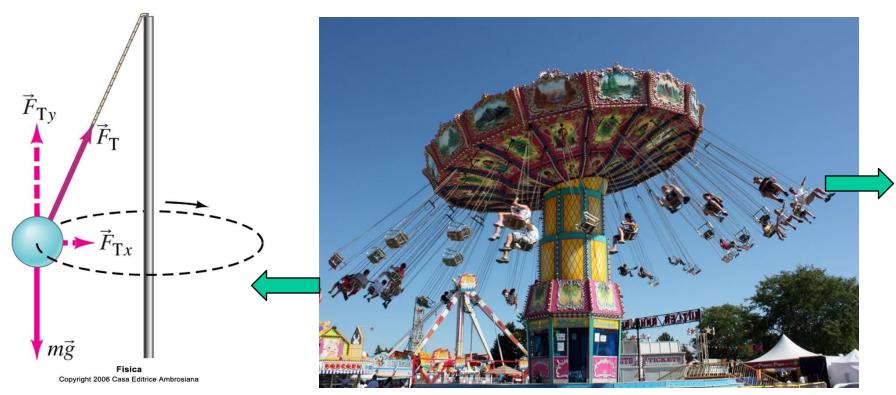


D'altra parte, se ci poniamo nel sistema di riferimento in rotazione della pallina, quest'ultima – che per inerzia tenderebbe a muoversi lungo la direzione tangente della sua velocità – è costretta, dalla forza esercitata su di lei dalla corda, a deviare continuamente dalla sua potenziale traiettoria rettilinea e a percorrere la circonferenza: la pallina percepisce questa costrizione come una forza centrifuga reale diretta verso l'esterno! In altre parole, la forza centrifuga è una forza (apparente nel sistema di riferimento terrestre, ma reale nel sistema di riferimento della pallina) sintomatica del fatto che un certo corpo si trova in un sistema di riferimento non inerziale!



Esempi di Forza Centrifuga

La forza centrifuga diretta verso l'esterno che avvertiamo quando giriamo seduti su una giostra come quella mostrata in figura, è dunque una forza apparente dal punto di vista del riferimento inerziale solidale con la Terra, ma diventa reale per noi che ci troviamo nel riferimento in rotazione solidale con la giostra, che è non inerziale: essa è, ancora una volta, dovuta al fatto che il nostro corpo, il quale tenderebbe per inerzia a proseguire il suo moto in linea retta, è invece costretto a girare assieme alla giostra a causa della forza centripeta esercitata dalla (componente orizzontale della) tensione della catena sui seggiolini su cui siamo seduti (come abbiamo visto accadere nell'esempio della palla che ruota attorno a un palo).



Esempi di Forza Centrifuga

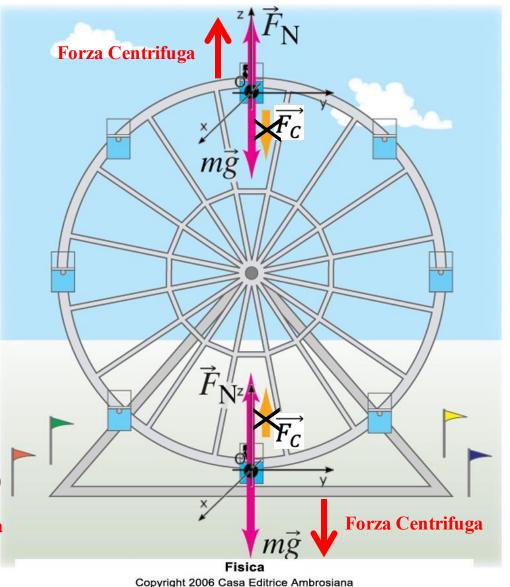
Riprendiamo l'esempio concettuale della ruota visto poco fa. Si chiedeva:

La **forza normale** che il seggiolino esercita sul turista nel punto più alto della ruota è: (a) minore, (b) maggiore, (c) uguale a quella che il seggiolino esercita nel punto più basso della ruota? E' più intuitivo rispondere ragionando dal punto di vista del sistema di riferimento del turista: nella cabina il turista non percepisce nessuna forza centripeta, ma suppone invece che esista una forza centrifuga, uguale ed opposta a quella centripeta, che si aggiunge alla forza peso e a quella normale in modo da formare un sistema equilibrato (visto che nel suo S.R. lui è fermo).

Nel punto più alto: $\overrightarrow{F_N} - m\overrightarrow{g} + \overrightarrow{F_C} = 0$

Forza Centrifuga

Nel punto più basso: $\overrightarrow{F_N} - m\overrightarrow{g} - \overrightarrow{F_C} = 0$



Esempi di Forza Centrifuga

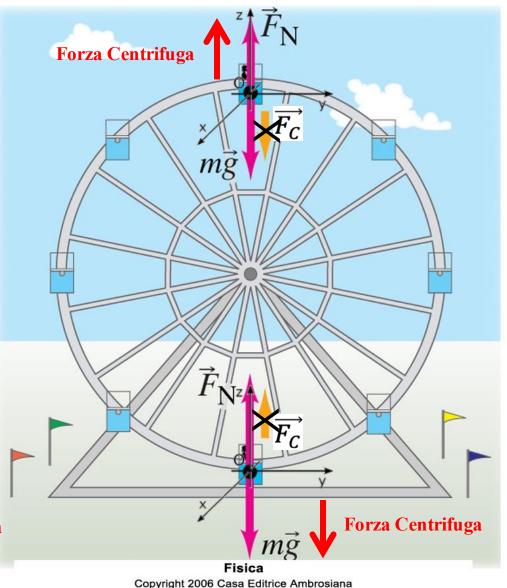
Riprendiamo l'esempio concettuale della ruota visto poco fa. Si chiedeva:

La **forza normale** che il seggiolino esercita sul turista nel punto più alto della ruota è: (a) minore, (b) maggiore, (c) uguale a quella che il seggiolino esercita nel punto più basso della ruota? E' più intuitivo rispondere ragionando dal punto di vista del sistema di riferimento del turista: nella cabina il turista non percepisce nessuna forza centripeta, ma suppone invece che esista una forza centrifuga, uguale ed opposta a quella centripeta, che si aggiunge alla forza peso e a quella normale in modo da formare un sistema equilibrato (visto che nel suo S.R. lui è fermo).

Nel punto più alto: $\overrightarrow{F_N} = m\overrightarrow{g} - \overrightarrow{F_C}$

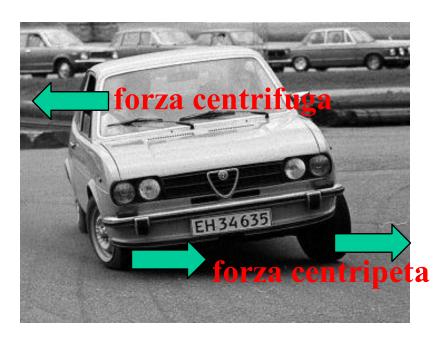
Forza Centrifuga

Nel punto più basso: $\overrightarrow{F_N} = m\overrightarrow{g} + \overrightarrow{F_C}$



Percorrendo una curva in automobile

Ormai sappiamo da dove ha origine la forza centripeta che mantiene l'auto sulla curva impedendole di sbandare, cioè dall'attrito delle ruote col terreno. Ma un passeggero dentro l'auto, durante la curva, sperimenta una forza centrifuga uguale ed opposta a quella centripeta, quindi verso l'esterno della curva.

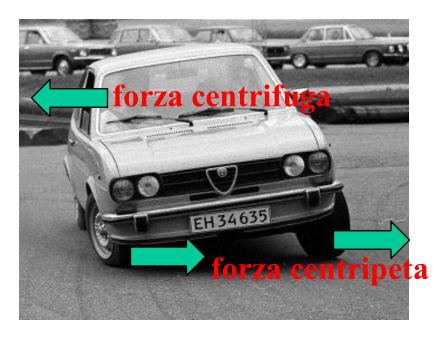


Orbitando intorno alla Terra

Sappiamo che la forza centripeta che mantiene una **navicella** in orbita attorno alla terra è rappresentata dalla attrazione gravitazionale terrestre.

Percorrendo una curva in automobile

Ormai sappiamo da dove ha origine la forza centripeta che mantiene l'auto sulla curva impedendole di sbandare, cioè dall'attrito delle ruote col terreno. Ma un passeggero dentro l'auto, durante la curva, sperimenta una forza centrifuga uguale ed opposta a quella centripeta, quindi verso l'esterno della curva.



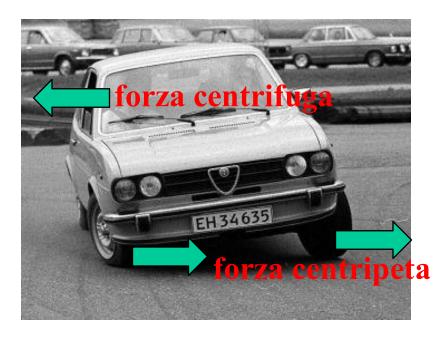
Orbitando intorno alla Terra

Sappiamo che la forza centripeta che mantiene una **navicella** in orbita attorno alla terra è rappresentata dalla attrazione gravitazionale terrestre.

Ma perchè, diversamente dal passeggero dell'auto, che viene schiacciato contro lo sportello, un astronauta dentro la navicella NON sente alcuna forza centrifuga agire su di lui ma sperimenta uno stato di galleggiamento, come in assenza di peso?

Percorrendo una curva in automobile

Ormai sappiamo da dove ha origine la forza centripeta che mantiene l'auto sulla curva impedendole di sbandare, cioè dall'attrito delle ruote col terreno. Ma un passeggero dentro l'auto, durante la curva, sperimenta una forza centrifuga uguale ed opposta a quella centripeta, quindi verso l'esterno della curva.



OVHD

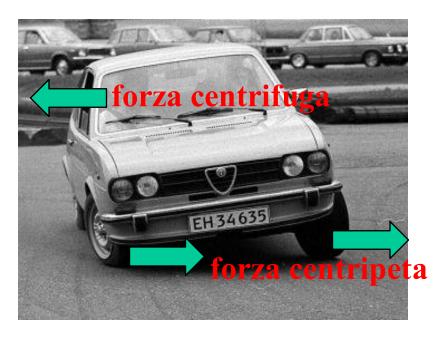
Orbitando intorno alla Terra

Sappiamo che la forza centripeta che mantiene una **navicella** in orbita attorno alla terra è rappresentata dalla attrazione gravitazionale terrestre.

Ma perchè, diversamente dal passeggero dell'auto, che viene schiacciato contro lo sportello, un astronauta dentro la navicella NON sente alcuna forza centrifuga agire su di lui ma sperimenta uno stato di galleggiamento, come in assenza di peso?

Percorrendo una curva in automobile

Ormai sappiamo da dove ha origine la forza centripeta che mantiene l'auto sulla curva impedendole di sbandare, cioè dall'attrito delle ruote col terreno. Ma un passeggero dentro l'auto, durante la curva, sperimenta una forza centrifuga uguale ed opposta a quella centripeta, quindi verso l'esterno della curva.



Orbitando intorno alla Terra

Sappiamo che la forza centripeta che mantiene una **navicella** in orbita attorno alla terra è rappresentata dalla attrazione gravitazionale terrestre.

Ma perchè, diversamente dal passeggero dell'auto, che viene schiacciato contro lo sportello, un astronauta dentro la navicella NON sente alcuna forza centrifuga agire su di lui ma sperimenta uno stato di galleggiamento, come in assenza di peso?