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3.1 Introduction

In this chapter we will begin to build up the theoretical framework needed to
describe more formally the kinds of complex behavior that we learned about in
Chapters 1 and 2. We will develop the formalism slowly and in simple steps to see
the essential features. We will try to avoid unnecessary mathematical jargon as
much as possible until we have built a firm conceptual understanding of the
framework.

The key theoretical tool in this description is a state space or phase space
description of the behavior of the system. This type of description goes back to the
French mathematician Henri Poincaré in the 1800s and has been widely used in
statistical mechanics since the time of the American physicist J. Willard Gibbs
(about 1900) even for systems that are linear and not chaotic [Gibbs, 1902]. Of
course, we are most interested in the application of state space ideas to nonlinear
systems; the behavior of linear systems emerges as a special case.
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Spazio degli Stati o Spazio delle Fasi?

Two notes on terminology:

1. In the literature on dynamical systems and chaos, the terms phase
space and state space are often used interchangeably. The term
phase space was borrowed from Josiah Willard Gibbs in his treatment
of statistical mechanics. The use of this notion in dynamical systems
and chaos is somewhat more general than that used by Poincaré and
Gibbs; so, we prefer (and will use) the term state space.

2. There is also some ambiguity about the use of the term degree of IW.Gibbs
freedom. In the classical mechanics of point particles a degree of
freedom refers to a pair of variables, such as the position coordinate
along the x axis and the corresponding component of the linear
momentum p,. In this usage, a simple mass on a spring has one
degree of freedom. (We shall use this definition in Chapter 8.) In
dynamical systems theory, the number of degrees of freedom is
usually defined as the number of independent variables needed to
specify the dynamical state of the system (or alternately, but
equivalently, as the number of independent initial conditions that can
be specified for the system). We will use the latter definition of
degree of freedom (except in Chapter 8). In the first sense of
“degrees of freedom,” the corresponding phase space must always
have an even number (2, 4, 6, ...) of dimensions. However, in the
theory of dynamical systems and chaos, it will often be useful to have
state spaces with an odd number of dimensions. The Lorenz model
of Chapter 1 is one such example.

J.H.Poincaré




3.2 State Space

In Chapter 1, we introduced rather casually the notion of a state space description of
the behavior of a dynamical system. Now we want to develop this notion more
carefully and in more detail. Let us start with a very simple example: the motion
of a point mass on an ideal (Hooke'’s _!..aw) spring, oscillating along the x axis. For
this system, Newton’s Second Law ( F = ma ) tells us that

(3.2-1)

Oscillatore Armonico Fr=m—=-kx
R.Hooke (1635-1703)
where (as in Chapter 1) k is the spring constant, and m is the particle’s mass. The
motion of this system is determined for all time by specifying its position
coordinate x at some time and its velocity

X = — 3.2-2
* dt ( )

8
at some time. Traditionally, we choose ¢ = O for that time, and x(f = 0) and
dx/dt(t =0) = x, are the “initial conditions” for the system. The motion, in fact, is
given by the equation

x(t) = x, coswt + f‘jsin wt (3.2-3)

where @ = Vk/m is the (angular) frequency of the oscillations. By differentiating
Eq. (3.2-3) with respect to time, we find the equation for the velocity

x(t) = —wx, sin®f + x, Cos Wt (3.2-4)
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Since knowledge of x(rf) and x(r) completely specifies the behavior of this
system, we say that the system has “two degrees of freedom.” (See the comment
on terminology on the next page.) At any instant of time we can completely
specify the state of the system by indicating a point in an x versus x plot. This plot
is then what we call the state space for this system. In this case the state space is
two-dimensional as shown in Fig. 3.1.

Note that the dimensionality of the state space is generally not the same as the
spatial dimensionality of the system. The state space dimensionality is determined
by the number of variables needed to specify the dynamical state of the system.
Our oscillator moves (by construction) in just one spatial dimension, but the state
space is two-dimensional.
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As time evolves, the initial state point in state space follows a trajectory,
which, in the case of the mass on a spring, is just an ellipse. (The ellipse can be
transformed into a circle by plotting x, /@ on the ordinate of the state space plot,
but that is simply a geometric refinement.) The trajectory closes on itself because
the motion is periodic. Such a closed periodic trajectory is called a cycle. Another
initial point (not on that ellipse) will be part of a different trajectory. A collection
of several such trajectories originating from different initial points constitutes a
phase portrait for the system. Figure 3.1 shows a phase portrait for the mass on a
spring system.

A state space and a rule for following the evolution of trajectories starting at

various initial conditions constitute what is called a dynamical system. The
mathematical theory of such systems is called dynamical systems theory. This
theory has a long and venerable history quite independent of the more recent theory
of chaos and was particularly well developed by Russian mathematicians (see, for
example, [Amold, 1983]). Because of the extensive groundwork done by
mathematicians studying dynamical systems, scientists and mathematicians
investigating chaos have been able to make relatively rapid progress in recent years.

Fig. 3.1. Phase portrait for the mass on a
Phase Portrait spring. The ellipses are state space

trajectories for the system. The larger the
(x,,%,) ellipse, the larger the total mechanical
0 0/ energy associated with the trajectory.

Vladimir Arnold
(1937-2010)
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3.3 Systems Described by First-Order Differential Equations

Our theoretical treatment will at first be limited to a special (but rather broad) class
of systems for which the equations giving the time-dependence of the state space
variables can be expressed as a set of coupled first-order differential equations. To
be specific, let us consider a system that has three degrees of freedom (in the
second sense described in Section 3.2). Hence, we need three state variables, say,
u, v, and w, to describe the state of the system. We will assume that the dynamics
of the system can be expressed as a set of three first-order differential equations.
That is, the equations involve only the first derivatives of «, v, and w with respect to
time: 3D State Space

—d = f(u,v,w) _
= v=g(u,v,w) (3.3-1)

Ed Lorenz -
(1917-2008)
' w=h(u,v,w)

The functions f, g, and & depend on the variables «, v, and w (but not their time
derivatives) and also on one or more control parameters, not denoted explicitly. In
general u, v, and w occur in all three of f, g, and A, and we say we have a set of
“coupled differential equations.” Time itself does not appear in the functions f, g,
and h. In such a case the system is said to be autonomous. The Lorenz model
equations of Chapter 1 are of this form. The time behavior of the system can be
tracked by following the motion of a point whose coordinates are u(f), wW(z), w(f) in a
three-dimensional uvw state space.




d’x .
> V= — accelerazione
dt

You might note, however, that the mass-on-a-spring model discussed earlier
was not of this form. In particular, Eq. (3.2-1) has a second-order time derivative,
rather than just a first-order time derivative. However, we can transform Eq. (3.2-
1) into the standard form by introducing a new variable, say, v such that

(3.3-2)

Using Eq. (3.3-2) and Eq. (3.2-1), we can write the time evolution equations for the

spring system as
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We can broaden considerably the class of systems to which Eq. (3.3-1)
applies by the following “trick.” Suppose that after applying the usual reduction
procedure, the functions on the right-hand side of Eq. (3.3-1) still involve the time
variable. (In that case, we say the system is nonautonomous.) This case most
often arises when the system is subject to an externally applied time-dependent
“force.” For a two-degree-of-freedom system, the standard equations will be of the
form

u= f(u,v,t) (3.3-5)

v=_g(u,wt) (3.3-6)

We can change these equations to a set of autonomous equations by introducing a
new variable w whose time derivative is given by
dt

W

The dynamical equations for the system then become
[ a= f(u,v,w)
- v=g(u,v,w) (3.3-8)

w=1

—

We have essentially enlarged the number of dimensions of the state space by | to
include time as one of the state space variables. The advantage of this trick is that it
allows us to treat nonautonomous systems (those with an imposed time
dependence) on the same footing as autonomous systems. The price we pay is the
difficulty of treating one more dimension in state space.



Punti Fissi
Why do we use this standard form (first-order differential equations) for the
dynamical equations? The basic reason is that this form allows a ready

identification of the fixed points of the system, and (as mentioned earlier) the fixed
points play a crucial role in the dynamics of these systems. Recall that the fixed

points are defined as the points in state space for which all of the time derivatives of

the state variables are 0. Thus, with our standard form equations the fixed points
are determined by requiring that

r-u'=f(u,v,w) fu,v,w)=0
v=g(u,v,w) » = glu,v,w)=0 (3.3-9)
w=h(u,v,w) h(u,v,w)=0

Thus, we find the fixed points by solving the three (for our three-dimensional
example) coupled algebraic equations.

An important question: Can the dynamical equations for all systems be

reduced to the form of Eq. (3.3-1)? The answer is yes if (and this is an important if)
we are willing to deal with an infinite number of degrees of freedom. For example,
systems that are described by partial differential equations (that is, equations with
partial derivatives rather than ordinary derivatives) or systems described by
integral-differential equations (with both integrals and derivatives occurring in
essential ways) or by systems with time-delay equations (where the state of the
system at time ¢ is determined not only by what is happening at that time but also
by what happened earlier), all can be reduced to a set of first-order ordinary
differential equations, but with an infinite number of equations coupled together.




3.4 The No-Intersection Theorem

Before beginning the analysis of the types of trajectories and fixed points that can
occur in state space, we state a fundamental and important theorem:

The No-Intersection Theorem: Two distinct state space trajectories

cannot intersect (in a finite period of time). Nor can a single trajectory
cross itself at a later time.

By distinct trajectories, we mean that one of the trajectories does not begin on one
of the points of the other trajectory. The parenthetical comment about a finite
period of time is meant to exclude those cases for which distinct trajectories
approach the same point as ¢ — oo . (In the excluded case, we say the trajectories
approach the point asymptotically.)

The basic physical content of this theorem is a statement of determinism. We
have already mentioned that the state of a dynamical system is specified by its
location in state space. Furthermore, if the system is described by equations of the
form of Eq. (3.3-1), then the time derivatives of the state variables are also
determined by the location in state space. Hence, how the system evolves into the
future is determined solely by where it is now in state space. Hence, we cannot
have two trajectories intersect in state space. If two trajectories did cross at some
point, then the two trajectories would have the same values of their state variables
and the same values of their time derivatives, yet they would evolve in different
ways. This is impossible if their time evolution is described by equations like Eq.
(3.3-1). As we shall see, the No-Intersection Theorem highly constrains the
behavior of trajectories in state space.

u= f(u,v,w)
v=g(u,v,w)

w=h(u,v,w)



The No-Intersection Theorem can also be based mathematically on
uniqueness theorems for the solutions of differential equations. For example, if the
functions f, g, and 4 on the right-hand-side of Eq. (3.3-1) are continuous functions
of their arguments, then only one solution of the equations can pass through a given
point in state space. [The more specific mathematical requirement is that these
functions be continuous and at least once differentiable. This is the so-called
Lipschitz condition (see, for example, [Hassani, 1991], pp. 570-71).

We shall see two apparent violations of this theorem. The first occurs for
those asymptotic “intersections” mentioned earlier. The second occurs when we
project the trajectory onto a two—dimensional plane for the sake of illustration. For
example, Fig. 1.19 shows a YZ plane projection of a trajectory for the Lorenz
model. The trajectory seems to cross itself several times. However, this crossing
occurs only in the two—dimensional projection. In the full three-dimensional state
space the trajectories do not cross.




Il Manifesto di Laplace

Il piu noto “manifesto” del determinismo e
certamente quello elaborato nel 1812 dal
matematico e astronomo francese Pierre
S.Laplace: "Possiamo considerare lo stato
attuale dell'universo come ['effetto del suo
passato e la causa del suo futuro. Una
intelligenza che, per un istante dato, potesse
conoscere tutte le forze da cui la natura e
animata e la situazione rispettiva degli esseri
che la compongono, e che inoltre fosse
abbastanza grande da sottomettere questi dati
all'analisi, abbraccerebbe nella stessa formula i
movimenti del piu grandi corpi dell'universo e
quelli dell'atomo piu leggero: nulla e
risulterebbe incerto, I'avvenire come il passato
sarebbe presente ai suoi occhi”

Pierre Simon Laplace, “Essai philosophique des probabilitas” (1812)
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Tempo, Cosmologia e Libero Arbitrio
di Alessandro Pluchino

Tempo, Cosmologia

e Libero Arbitrio a < 5 2 T
Saggio semi-divulgativo che si concentra in particolare sulle

relazioni tra il problema del Tempo, i nuovi modelli Cosmologici del
. — Multiverso e la nostra sensazione di possedere un Libero Arbitrio,

e cercando di mostrare come questi tre ambiti, apparentemente
distinti tra loro, siano in realta indissolubilmente legati

http://www.pluchino.it/NUOVO-SITO-2019/BOOKS_ET_AL.html
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3.5 Dissipative Systems and Attractors

In our current discussion of state space and its trajectories, we will limit our
discussion to the case of dissipative systems. (Systems for which dissipation is
unimportant will be discussed in Chapter 8.) As mentioned in Chapter 1, a
dissipative system displays the nice feature that the long-term behavior of the

system is largely independent of how we “start up” the system. We will elaborate
this point in Section 3.9. (Recall, however, that there may be more than one
possible “final state” for the system.) Thus, for dissipative systems, we generally
ignore the transient behavior associated with the start up of the system and focus
our attention on the system’s long-term behavior.

As the dissipative system evolves in time, the trajectory in state space will
head for some final state space point, curve, area, and so on. We call this final
point or curve (or whatever geometric object it is) the affractor for the system since
a number of distinct trajectories will approach (be attracted to) this set of points in
state space. For dissipative systems, the properties of these attractors determine the
dynamical properties of the system’s long-term behavior. However, we will also be
interested in how the trajectories approach the attractor.




The set of initial conditions giving rise to trajectories that approach a given
attractor is called the basin of attraction for that attractor. If more than one
attractor exists for a system with a given set of parameter values, there will be some
initial conditions that lie on the border between the two (or more) basins of
attraction. See Fig. 3.2. These special initial conditions form what is called a
separatrix since they separate different basins of attraction.

Basin of Attraction for A2

Basin of Attraction for Al

Fig. 3.2. A sketch of attractors Al and A2 and basins of attraction in state space. Trajectories
sminghlsidethedouedbasinevemmllyendupinﬂ\eamactorregiminsidethedotted
region. Trajectories starting in the other basin head for the other attractor. Forstanmgpom!s
outside these two basins, the trajectories may go toward a third attractor (not shown). The

line bounding a basin of attraction forms a separatrix.



The geometric properties of basins of attraction can often be complicated. In
some cases the boundaries are highly irregular, forming what are called fractal
basin boundaries (GMO83, MGO85). In other cases, the basins of attraction can

be highly intertwined, forming what are called riddled basins of attraction
(SO0O93a): any point in one basin is close to another point in another basin of
attraction. As we mentioned in Chapter 1, the existence of such complicated
structures means that our ability to predict even which attractor a system will
evolve to is severely compromised.

In the next sections we will describe the kinds of trajectories and attractors
that can occur in state spaces of different dimensions. The dimensionality of the
state space is important because the dimensionality and the No-Intersection
Theorem together highly constrain the types of trajectories that can occur. In fact,
we shall see that we need at least three state space dimensions in order to have a
chaotic trajectory. We will, however, begin the cataloging with one and two
dimensions to develop the necessary mathematical and conceptual background.
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3.6 One-Dimensional State Space

A one-dimensional system, in the sense of dimension we are using here, has only
one state variable, which we shall call X. This is, as we shall see, a rather
uninteresting system in terms of its dynamical possibilities; however, it will be
useful for developing our ideas about trajectories and state space. For this one
dimensional state space, the dynamical equation is

X = f(X) (3.6-1)

The state space is just a line: the X axis.

First let us consider the fixed points for such a system, that is the values of X
for which X =0. Why are the fixed points important? If a trajectory happens to get
to a fixed point, then the trajectory stays there. Thus, the fixed points divide the X
axis up into a number of “noninteracting” regions. We say the regions are
noninteracting because a trajectory that starts from some initial X value in a region
located between two fixed points can never leave that region.

SPAZIO DEGLI STATI 1D
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Now we want to investigate what happens to trajectories that are near a fixed
point. For a one-dimensional state space, there are three types of fixed points:
1. Nodes (sinks): fixed points that attract nearby trajectories.
2. Repellors (sources): fixed points that repel nearby trajectories.
= 3. Saddle points: fixed points that attract trajectories on one side but
repel them on the other. (The origin of the term saddle point will
become obvious when we get to the two-dimensional case.)
A node is said to be a stable fixed point in the sense that trajectories that start near
it are drawn toward it much like a ball rolling to a point of stable equilibrium under
the action of gravity. A repellor is an example of an unstable fixed point in
analogy with a ball rolling off the top of a hill. The top of the hill is an equilibrium
point, but the situation is unstable: The slightest nudge to the side will cause the
ball to roll away from the top of the hill. A saddle point attracts trajectories in one
direction while repelling them in the other direction.

®
Node (stable fixed point) Repellor (unstable fixed point) Saddle Point
METAFORA GRAVITAZIONALE DEL LANDSCAPE ENERGETICO

\



Punti Fissi in una dimensione

How do we determine what kind of fixed point we have? The argument goes
as follows: Let X, be the location of the fixed point in question. By definition, we

X|,., =f(X,)=0 (3.62)

Now consider a trajectory that has arrived at a point just to the right of X,. Let us
call that point X = X, + x (see Fig. 3.3). We shall assume that x is small and
— positive. If AX, + x) is positive (for x positive), then X is positive and hence the
trajectory point will move away from X, (toward more positive X values). On the
other hand, if X, + x) is negative (for x positive), then X is negative and the
trajectory moves to the left toward the fixed point X,. Conversely, if we start to the
left of X, along the X axis, then we need X, — x) positive to move toward X, and
_ X, — x) negative to move away from X,. These two cases are illustrated in Fig.
3.3. When trajectories on both sides of X, move away from X,, the fixed point is a
repellor. When trajectories on both sides of X, move toward X,,, the fixed point is a

node. fX —_— X=f(X) fX

La velocita
. assume il segno )
X>0 x°l+ x della funzione f(X) IX <0 X, X,l+ x
LO SPAZIO DEGLI STATI 1D repella-
E’ IL SOLO ASSE X

Fig. 3.3. On the left, £(X) in the neighborhood of a node located at X, On the right, £ (X) in
the neighborhood of a repellor located at X,,.



Both of these cases can be summarized by noting that the derivative of £X)

with respect to X evaluated at X, is negative for a node and positive for a repellor.
The value of this derivative at the fixed point is called the characteristic value or

eigenvalue (from the German eigen = characteristic) of that fixed point. We call
the characteristic value A .
2 df(x)i valore caratteristicoo (3 ,6-3)
dx x-x.

autovalore del Punto Fisso

We summarize these results in Table 3.1. The crucial and important lesson here is
that we can determine the character of the fixed point and consequently the
behavior of the trajectories near that fixed point by evaluating the derivative of the

function f{X) at that fixed point.

Table 3.1
Characteristic Values
A<O fixed point is a node
A>0 fixed point is a repellor
f& node f'(X,)<0 f&
O A>0

Q xol+x xo/xo:'x
1
” \‘l X /v\_p %

A<O repellor f'(X,)>0

Fig. 3.3. On the left, £(X) in the neighborhood of a node located at X, On the right, £ (X) in
the neighborhood of a repellor located at X,,.




What happens when the characteristic value is equal to 0? The fixed point
might be a node or a repellor or a saddle point. To find out which is the case we
need to look at the second derivative of f with respect to X as well as the first
derivative. For a saddle point, the second derivative has the same sign on both
sides of X, (see Fig. 3.4). Thus, we see that for a saddle point the trajectory is
attracted toward the fixed point on one side, but repelled from the saddle point on
the other.

Fig, 34,

A% caddle [ A% saddle I1

f"'(X)>0

X>0 X>0 (|< 0 X <0
ES N2 = do g0
X /x

f'(X)<0

f‘(Xo)ZO

A=0.




For the node and repellor with characteristic value equal to 0, the second
derivative changes sign as X passes through X, (it is positive on the left and
negative on the right for the node and negative on the left and positive on the right
for the repellor). These kinds of “flat” nodes and repellors attract and repel
trajectories more slowly than the nodes and repellors with nonzero characteristic
values. For the type I saddle point, trajectories are attracted from the left but
repelled on the right. The attraction and repulsion are reversed for the type II
saddle points.

A cadlait fX) saddle II
f'(X)>0
—il\ S — | —
3\
f'(X)<0
f‘(Xo) =0
fX) node A= 0. fX) repellor
fH(X) > 0 ”(X) > 0

A - — /_»
S 8

f”(X)<O f"(X)<O

Fig, 3.4. Four possible types of fixed points in one-dimension with characteristic value A= 0.
These fixed points are structurally unstable.



We will not discuss these types of “flat” fixed points further because, in a
sense, they are relatively rare. They are rare because they require both the function
AX) and its first derivative to be 0. If we have only one control parameter to adjust,
then it is “unlikely” that we can satisfy both conditions simultaneously for some
range of parameter values. In more formal terms, we talk about the structural

stability of the fixed point. If the fixed point keeps the same character when the
shape or position of the function changes slightly (for example, as a control
parameter is adjusted), then we say that the fixed point is structurally stable. If the
fixed point changes character or disappears completely under such changes, then
we say it is structurally unstable. For example, the nodes and repellors shown in
Fig. 3.3 are structurally stable because shifting the function AX) up and down
slightly or changing its shape slightly does not alter the character of the fixed point.

£00 _— £00

A>0
N X1+x 4_x°/x,l+x
Xe \4—'—x '\—" X

A<O repellor

Fig. 3.3. On the left, f(X) in the neighborhood of a node located at X, On the right, £ (X) in
the neighborhood of a repellor located at X,,.



However, the fixed points shown in Fig. 3.4 are structurally unstable. For example,
a small change in the function, say, shifting it up or down by a small amount, will
cause a saddle point to either disappear completely or change into a node-repellor
pair (see Fig. 3.5).

£X) No Fixed Point

o N/ ho
X £X)
(b)

Saddle Point

SR
f X

Node

Fig. 3.5. In one-dimensional state spaces, a saddle point, the point X, in (b), is structurally
unstable. A small change in the function f{X), for example pushing it up or down along the
vertical axis, either removes the fixed point (a), or changes it into a node and a repellor (c).



To examine in detail what constitutes a small change in the function fX) and
how to decide whether a particular structure is stable or unstable would lead us
rather far afield (see [Guckenheimer and Holmes, 1990]). Most of the work in
nonlinear dynamics focuses on structurally stable state space portraits because in
any real experiment the only properties that we can observe are those that exist for
some finite range of parameter values. We can never set the experimental
conditions absolutely precisely, and “noise” always smears out parameter values.
However, as we shall see, structurally unstable conditions are still important: In
many cases they mark the border between two different types of behavior for the
system. We will return to this issue at the end of this chapter in the discussion of
bifurcations.

Strutturalmente stabile Strutturalmente instabile

e node fiX) | Saddle Point
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X = f(X)

3.7 Taylor Series Linearization Near Fixed Points

The formal discussion of the nature of fixed points can be summarized very
compactly using the mathematical notion of a Taylor series expansion of the
function f{X) for X values in the neighborhood of the fixed point X,;:

700 = )+ (X - X)L
+-;-(x _X,)? __:sz (3.7-1)
de Nelle vicinanze del punto fisso si
3
= (X X,) dX3 “possono trascurare...

where all the derivatives are evaluated at X = X,. At a fixed point for a dynamical
system, the first term on the right-hand side of Eq. (3.7-1) is 0, by the definition of
fixed point. The Taylor series expansion tells us that the function fX) near X, is
determined by the values of the derivatives of f evaluated at X, and the difference
between X and X,,. This information together with the dynamical equation (3.6-1) is
sufficient to predict the behavior of the system near the fixed point.
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X = f(X)

J(X)=(X-X,)

In particular, we introduce a new variable x = X - X,, which measures the
distance of the trajectory away from the fixed point. If we neglect all derivatives of

order higher than the first, then x satisfies the
EQUAZIONE LINEARIZZATA

4,
dX

the solution to which is

DISTANZA DELLA TRAIETTORIA
DAL PUNTO FISSO X,

where

ESPONENTE DI LYAPUNOV A =

uation

k= Ax (3.7-2)

X , (3.7-3)
x(1) t
J.x(O)?x - J.Oﬂbdt

In[x(#)]—In[x(0)] = Az
x() = x©0)* (3.7-4)

. _df N

— el
‘ -

x(1) = x(0)e* ~

%

df (X) ~

dx =

that is, A is the characteristic value of the fixed point. We see that the trajectory
approaches the fixed point (a node) exponentially if A <0 and is repelled from the
fixed point (a repellor) exponentially if A >0. A is also called the Lyapunov
exponent for the region around the fixed point. We should emphasize that these

results hold only in the immediate neighborhood of the fixed point where the
Taylor series expansion Eq. (3.7-1), keeping only the first derivative term, is a good

description of the function fX).

fX)

node

—




3.8 Trajectories in a One-Dimensional State Space

What kinds of trajectories can we have in a one-dimensional state space? First, we
should note that our analysis thus far simply tells us what happens in the
neighborhood of fixed points or what we might call the local behavior of the
system. As we have seen, this local behavior is determined by the nature of the
derivatives of the time evolution function evaluated at the fixed point. To obtain a
larger-scale picture of the trajectories (a so-called global picture or a global phase
portrait), we need to consider the relationship between the positions of different
kinds of fixed points.

fX)

nodo repulspre nodo

Fig. 3.6. In a one-dimensional state
space, two nodes (here labeled X; and X))
must have a repellor R located between
them.



L’Equazione Logistica (o di Verhulst)

Exercise 3.8-3. The logistic differential equation. The following
differential equation has a “force” term that is identical to the logistic map
function introduced in Chapter 1 Mappa Logistica

X =AX(1-X) Ae[0,1]

T = Az,(1 — z,,)

(a) Find the fixed points for this differential equation.

P. F;Verhulst | (b) Determine the characteristic value and type of each of the fixed points.
(1804-1849)

Modello di crescita

Avendo supposto che il numero di individui di una popolazione sia una funzione continua del tempo N(7) che ammette

derivata continua, si ha che lincremento della popolazione al variare del tempo pud essere rappresentato dalla derivata Accrescimento
di N(7), che in un modello slementare si pud supporre direttamente proporzionale al numero di individui della Malthusiano ——3)
A K = capacita di carico
Si ha pertanto la seguente equazione ditferenziale: N saturazione
d
5 N=rN(t) - N({)=N_¢" Crescita Maltusiana (esponenziale) K
con r: parametro di crescita malthusiana (tasso massimo di crescita della popolazione). ¢==Curva o
Pertanto se r & una costante la popolaziona cresce in maniera esponenziale con pendenza dipendents da r.
Invece in un ambiente la cui disponibilita di risorse & limitata si pud descrivere I'evoluzione della popolazione utilizzando ! N
un coelfficiente r che decresce all'aumentare della popolazione: il modello pili semplica 8 r{t): =a — bN(f) conae b . e
costanti. Sostituendo tale funzione nella precedente equazione differenziale si ottiene:
dJV -» . 1 » .
= aN(t) - bN*(2) e _
dt Confronto tra curva logistica e curva di &)
:RM =S m;{? i se a=b (K=1) i accrescir'nento esponenzxale
o =aN (1 K) ) | N()=aN(1-N) (malthusiano). | parametri sono:

k=10,N0=l,r=l

—
con J{ = —che & la cosiddetta popolazione massima sostenibile ed a uguale al parametro di crescita malthusiana.

b



