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Metodo dello Jacobiano per studiare i punti fissi nel caso generale a 2 dim.
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3.14 The Jacobian Matrix for Characteristic Values

We would now like to introduce a more elegant and general method of finding the
characteristic equation for a fixed point. This method makes use of the so-called
Jacobian matrix of the derivatives of the time evolution functions. Once we see
how this procedure works, it will be easy to generalize the method, at least in
principle, to find characteristic values for fixed points in state spaces of any
dimension. The Jacobian matrix for the system is defined to be the following
square array of the derivatives:

Autovalori

Matrice Jacobiana J=(f“ f") ) (2,4 (3.14-1)

fo fa

where the derivatives are evaluated at the fixed point. We subtract A from each of
the principal diagonal (upper left to lower right) elements and set the determinant of
the matrix equal to O:




Diagramma dei Punti Fissi in uno Spazio degli Stati a Due Dimensioni
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6.4 Rabbits versus Sheep Sheep

In the next few sections we'll consider some simple examples of phase plane
analysis. We begin with the classic Lotka—Volterra model of competition between
two species, here imagined to be rabbits and sheep. Suppose that both species are
competing for the same food supply (grass) and the amount available is limited.
Furthermore, ignore all other complications, like predators, seasonal effects, and
other sources of food. Then there are two main effects we should consider:
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Punti fissi con valori caratteristici complessi coniugati

Example: The Brusselator Model
As an illustration of our techniques, let us return to the Brusselator Model given in
Eq. (3.11-1).

X=A-(B+D)X + X%

. 3.11-1
The Brusselator Model | , _ ., 2, ( )

First let us find the fixed points for this set of equations. By setting the time
derivatives equal to 0, we find that the fixed points occur at the values X,Y that

satisfy
A-(B+D)X+ XY =0 (3.11-2)
BX - X*Y =0 (3.11-3)

We see that there is just one point (X,Y) which satisfies these equations, and the
coordinates of that fixed point are X, = A, ¥, = B/A.

llya Prigogine
(1917-2003)




Punti fissi con valori caratteristici complessi coniugati

X=A-(B+D)X + X% - The Jacobian matrix for that set of equations is
Y =BX - XY g 2 o
Joudl S22 Az A=4 (3.14-7)
-B  -A"] Try=(B-1)-A

1 punto fisso:

Xo=A, Y,=BIA Following the Jacobian determinant method outlined earlier, we find the
characteristic values:

- TrJ £ ~/(TrJ)> — 4A - i =~l-[(B-l)-A’]

| 2 2 (3.14-8)
ilJ(A’ -(B-1)) -44° A=1
2 TrJ=B-2
In the discussion of this model, it is traditional to set|A = 1{and let B be the
control parameter. Let us follow that tradition. We see that with @ < 2, both
characteristic values have negative real parts and the fixed point is a spiral node.
This result tells us that the chemical concentrations tend toward the fixed point
values X, =A =1, Y, = B as time goes on. They oscillate, however, with the
frequency Q =|B(B - 4), as they head toward the attractor. For|2 < B < 4, [the
fixed point becomes a spiral repellor. However, our analysis cannot tell us what
happens to the trajectories as they spiral away from the fixed point. As we shall
learn in the next section, they tend to a limit cycle as shown in Fig. 1.1 in Section I
(for a different model).

Ex: A=1,B=1 =2 A=1, TrJ=-1, TrJ2-4A<0 : Spiral Node
A=1,B=3 =2 A=1, TrJ=1, TrJ2-4A<0 : Spiral Repellor

Brusllator's phase space

50

llya Prigogine
(1917-2003)
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Diagramma dei Punti Fissi in uno Spazio degli Stati a Due Dimensioni

_ TrJ £ +(Tr))* - 4A

B 2

= f'v“.,";h . '2 _.:':E s ¥
i J(]:I’])“ 3 ,4A <0 B=2

TyrJ | ... . @)’ =4A>0
/ / / " unstable nodes "
* REPELLORS e

-

~ unstable spirals T =0 ?

[ SPIRACREPELLORS " " . |

, spirals (o

WL U SPIRALINODES

stars, degenerate nodes
star ! degenerate
(2 autovettori ;L+ - /l— - ;L node
indipendenti) (1 autovettore)




3.15 Limit Cycles

In state spaces with two or more dimensions, it is possible to have cyclic or periodic
behavior. This very important kind of behavior is represented by closed loop
trajectories in the state space. A trajectory point on one of these loops continues to
cycle around that loop for all time. These loops are called limit cycles if the cycle is
isolated, that is if trajectories nearby either approach or are repelled from the limit
cycle. The discussion in the previous section indicated that motion on a limit cycle
in state space represents oscillatory, repeating motion of the system. The
oscillatory behavior is of crucial importance in many practical applications, ranging

from radios to brain waves.
= o I SPIRAL
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Il Teorema di Poincaré-Bendixson

We shall formulate the analysis in answer to two questions: (1) When do
limit cycles occur? and (2) When is a limit cycle stable or unstable? The first
question is answered for a two-dimension state space by the famous Poincaré-

Bendixson Theorem. The theorem can be formulated in the following way:

1. Suppose the long-term motion of a state point in a two-dimensional state space
is limited to some finite-size region; that is, the system doesn’t wander off to
infinity.

2. Suppose that this region (call it R) is such that any trajectory starting within R
stays within R for all time. [R is called an “invariant set” for that system.]

3. Consider a particular trajectory starting in R. The Poincaré-Bendixson
Theorem states that there are only two possibilities for that trajectory:

b. The trajectory approaches a limit cycle as 1 — oo .

{ a. The trajectory approaches a fixed point of the system as ¢ — oo .

A proof of this theorem is beyond the scope of this book. The interested
reader is referred to [Hirsch and Smale, 1974]. We can see, however, that the
results are entirely reasonable if we take into account the No-Intersection Theorem
and the assumption of a bounded region of state space in which the trajectories live.
The reader is urged to draw some pictures of state space trajectories in two
dimensions to see that these two principles guarantee that the only two possibilities
are fixed points and limit cycles.



Il Teorema di Poincaré-Bendixson

The Brussellator model displays the typical situation in which a limit cycle
develops. An invariant region R contains a repelling fixed point. Trajectories
starting near the repelling fixed point are pushed away and (if there is no attracting
fixed point in R) must head toward a limit cycle (which can be proved to enclose
the repellor).

It is important to note that the Poincaré-Bendixson Theorem works only

| in two dimensions because only in two dimensions does a closed curve |
| separate the space into a region “inside” the curve and a region “outside.”
Thus a trajectory starting inside the limit cycle can never get out and a
trajectory starting outside can never get in. This argument is an excellent
| example of the power of topological arguments in the study of dynamical |
systems. Further, from the Poincaré-Bendixson Theorem we arrive at an
important result: Chaotic trajectories (in a bounded system) cannot occur
in a state space of two dimensions. For systems described by differential
equations, we need at least three state-space dimensions for chaos.
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The Brussellator model displays the typical situation in which a limit cycle
develops. An invariant region R contains a repelling fixed point. Trajectories
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3.16 Poincaré Sections and the Stability of Limit Cycles

We have seen that in state spaces of two (or more) dimensions, a new type of
behavior can arise: motion on a limit cycle. The obvious question is the following:
[s the motion on the limit cycle stable? That is, if we push the system slightly away
from the limit cycle, does it return to the limit cycle (at least asymptotically) or is it
repelled from the limit cycle? As we shall see, both possibilities occur in actual
systems.

You might expect that we would proceed much as we did for nodes and
repellors, by calculating characteristic values involving derivatives of the functions
describing the state space evolution. In principle, one could do this, but Poincaré
showed that an algebraically and conceptually much simpler method suffices. This
method uses what is called a Poincaré section of the limit cycle. The Poincaré
section is closely related to the stroboscopic portraits used in Chapter 1 to discuss
the behavior of the diode circuit.

STABLE LIMIT CYCLE UNSTABLE LIMIT CYCLE




Costruzione della Sezione di Poincaré

For a two-dimensional state space, the Poincaré section is constructed as
follows. In the two-dimensional state space, we draw a line segment that cuts
through the limit cycle as shown in Fig. 3.12 (a). This line can be any line
segment, but in some cases one might wish to choose the X, or X; axes. Let us call
the point at which the limit cycle crosses the line segment going, say, point P.

(a) x2

J.H.Poncaré (1854-1912)

Fig. 3.12. (a) The Poincaré line segment intersects the limit cycle at point P. (b) The four
possibilities for sequences of Poincaré intersection points for trajectories near a limit cycle in
two dimensions.



If we now start a trajectory in the state space at a point that is close to, but not
on, the limit cycle, then that trajectory will cross the Poincaré section line segment
at a point other than P. Let’s call the first crossing point P,. As the trajectory
evolves, it will cross the Poincaré line segment again at points P,, P;, and so on. If
the sequence of points approaches P as time goes on for any starting point in the
neighborhood of the limit cycle, we say that we have an affracting limit cycle or,
equivalently, a stable limit cycle. In other words, the limit cycle is an attractor for
the system. If the sequence of intersection points moves away from P (for any
trajectory starting near the limit cycle), we say we have a repelling limit cycle or,
equivalently, an unstable limit cycle. Another possibility is that the points are
attracted on one side and repelled on the other: In that case we say that we have a
saddle cycle (in analogy with a saddle point). These possibilities are shown

graphically in Fig. 3.12 (b). P
(b) P, P, Py WP P P
An example of attracting limit cycle Attracting cycle

P P, P P P, P

Repelling cycle  -0—o—o—¢—0——0—0—

spiral repellor
P, P, P, P P, P

Saddle cycle > o —9o-¢o oo

p, P, P, P, P, P
Saddle cycle . o—e-¢o oo
Fig. 3.12. (a) The Poincaré line segment intersects the limit cycle at point P. (b) The four
possibilities for sequences of Poincaré intersection points for trajectories near a limit cycle in

two dimensions.




How do we describe these properties quantitatively? We use what is called a
Poincaré map function (or Poincaré map, for short). The essential idea is that
given a point P), where a trajectory crosses the Poincaré line segment, we can in
principle determine the next crossing point P, by integrating the time-evolution
equations describing the system. So, there must be some mathematical function,
call it F, that relates P, to Py: P = F(P;). (Of course, finding this function F is
equivalent to solving the original set of equations and that may be difficult or
impossible in actual practice.) In general, we may write

P, =F(F) (3.16-1)

In general the function F depends not only on the original equations describing the
system, but on the choice of the Poincaré line segment as well.

To analyze the nature of the limit cycle, we can analyze the nature of the
function F and its derivatives. Two points are important to notice:

—

1. The Poincaré section reduces the original two-dimensional problem
to a one-dimensional problem.

2. The Poincaré map function states an iterative (finite-size time step)
relation rather than a differential (infinitesimal time step) relation.

2 Vantaggi —

—

The last point is important because F gives P,,, in terms of P,. The time
interval between these points is roughly the time to go around the limit cycle once,
a relatively big jump in time. On the other hand, a one-dimensional differential
equation x = f(x) tells us how x changes over an infinitesimal time interval. The
function F is sometimes called an iterated map function (or iterated map, for short).
(Because of the importance of iterated maps in nonlinear dynamics, we shall devote
Chapter 5 to a study of their properties.)




Py

P,

Let us note that the point P on the limit cycle satisfies P = F(P). Any point P°
that satisfies P* = F(P") is called a fixed point of the map function. If a trajectory
crosses the line segment exactly at P, it returns to P on every cycle. In analogy
with our discussion of fixed points for differential equations, we can ask what
happens to a point P, close to P*. In particular, we ask what happens to the distance
between P, and P” as the system evolves. Formally, we look at

PPl P I Pz_P- — F(P,)—F(P‘) (3.16-2)

and use a Taylor series expansion about the point P’ to write

P =lF(P)+2E] (p-P)+..-F(P) (3.16-3)
dP|,:

If we define d; = (P; - P"), we see that

4 -4
dP

d, (3.16-4)

»
We now define the characteristic multiplier M for the Poincaré map:

=L (M>0) (3.16-5)

dp|,

M is also called the Flogquet multipler or the Lyapunov multiplier. In terms of M,
we can write Eq. (3.164)

d,=Md, (3.16-6)
We find in general
d,,=M"d, (3.16-7)



d,,=M"d, (3.16-7)

We see that if M < 1, then d; < d,, d; < d,, and so on: The intersection points
approach the fixed point P. In that case the cycle is an attracting limit cycle. If M >
1, then the distances grow with repeated iterations, and the limit cycle is a repelling
cycle. For saddle cycles, M is equal to 1 but the derivative of the map function is
— greater than 1 on one side of the cycle and less than 1 on the other side. However,
based on our discussion of saddle points for one-dimensional state spaces, we
expect that saddle cycles are rare in two-dimensional state spaces. Table 3.4 lists
the possibilities.

—

attracting limit cycle repelling limit cycle
HO<M<1 _ __ IM>1 -~ " ~o

-
77

X,

Table 3.4.
The Possible Limit Cycles and Their Characteristic
Multipliers for Two-Dimensional State Space

Characteristic Multiplier Type of Cycle Ma... cosa
M<1 Attracting Cycle .
M>1 Repelling Cycle p osstamo
Mo 1 Saddle Cycle dire sul caso

(rare in two-dimensions) M<0?




We can also define a characteristic exponent associated with the cycle by the
equation

M =¢* (3.16-8)
or
A=In(M) (3.16-9)

The idea is that the characteristic exponent plays the role of the Lyapunov exponent
but the time unit is taken to be the time from one crossing of the Poincaré section to
the next.

Let us summarize: The Poincaré section method allows us to characterize the
possible types of limit cycles and to recognize the kinds of changes that take place
in those limit cycles. However, in most cases, we cannot find the mapping function
F explicitly; therefore, our ability to predict the kinds of limit cycles that occur for a
given system is limited.

attracting limit cycle repelling limit cycle

—

Ha<0  _ = A>0 - T T ~o
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3.17 Bifurcation Theory

We have seen that the characteristic values associated with a fixed point depend on
the various parameters used to describe the system. As the parameters change, for
example as we adjust a voltage in a circuit or the concentration of chemicals in a
reactor, the nature of the characteristic values and hence the character of the fixed
point may change. For example, an attracting node may become a repellor or a
saddle point. The study of how the character of fixed points (and other types of
state space attractors) change as parameters of the system change is called

bifurcation theory. (Recall that the term bifurcation is used to describe any sudden
change in the dynamics of the system. When a fixed point changes character as
parameter values change, the behavior of trajectories in the neighborhood of that
fixed point will change. Hence the term bifurcation is appropriate here.) Being able
to classify and understand the various possible bifurcations is an important part of
the study of nonlinear dynamics. However, the theory, as it is presently developed,
is rather limited in its ability to predict the kinds of bifurcations that will occur and
the parameter values at which the bifurcations take place for a particular system.
Description, however, is the first step toward comprehension and understanding.
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We should also emphasize that simple bifurcation theory treats only
the changes in stability of a particular attractor (or, as we shall see in Chapter 4, a
particular basin of attraction). Since in general a system may have, for fixed
parameter values, several attractors in different parts of state space, we often need
to consider the overall dynamical system (that is, its “global” properties) to see
what happens to trajectories when a bifurcation occurs.

To keep track of what is happening as the control parameter is varied, we will
use two types of diagrams. One type, which we have seen before, is the bifurcation

1 diagram, in which we plot the location of the fixed point (or points) as a function of
the control parameter. In the second type of diagram, we plot the characteristic
2 values of the fixed point as a function of the control parameter.

To see how this kind of analysis proceeds, let us begin with the one-
dimensional state space case. In a one-dimensional state space, a fixed point has
just one characteristic value A. The crucial assumption in the analysis is that A
varies smoothly (continuously) as some parameter, call it u, varies. For example, if
A() < O for some value of u, then the fixed point is a node. As u changes, A might
increase (become less negative), going through zero, and then become positive.
The node then changes to a repellor when A > 0.
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Biforcazioni in 1D

parameter

Let us consider a specific example: /

x=p-xt (3.17-3)

For_;positive, there are two fixed points: one at x=+J;_1, the other at x=-J;7.

For| u negative |there are no fixed points (assuming, of course, that x is a real ; _ (X )i
number). If we use Eq. (3.6-3), which defines the characteristic value for a fixed dX |x.x,
point, to find the characteristic value of the two fixed points (for u > 0), we see that 4 (x)

the fixed point at x =—/u is a repellor, while the fixed point at x=+u isa ax
node. A1) <0
M=) >0

©w<0 u>0

1--

| REF{EL}H{/\NQDE
0 1, / 0 \




Biforcazioni in 1D

parameter

Let us consider a specific example: /

x=p-xt (3.17-3)

For_;positive, there are two fixed points: one at x=+J;_1, the other at x=-J;7.

For| u negative there are no fixed points (assuming, of course, that x is a real ; _ éfﬂ‘

number). If we use Eq. (3.6-3), which defines the characteristic value for a fixed dX |x.x

point, to find the characteristic value of the two fixed points (for u > 0), we see that dr(x) 5

the fixed point at x =—[u is a repellor, while the fixed point at x =+Ju isa dx

node. A1) <0
If we start with i < 0 and let it increase, we find that a bifurcation takes place

at 4= 0. At that value of the parameter we have a saddle point, which then changes M) >0

into a repellor-node pair as 4 becomes positive. We say that we have a repellor-
node bifurcation at ji = 0.

©w<0 u=0 u>0
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Biforcazioni in 1D

parameter

Let us consider a specific example: /

x=p-xt (3.17-3)

For_;positivc, there are two fixed points: one at x=+J;_1, the other at x=-\/;7.

For| u negative there are no fixed points (assuming, of course, that x is a real ; _ gfﬂ‘

number). If we use Eq. (3.6-3), which defines the characteristic value for a fixed dX |x.x

point, to find the characteristic value of the two fixed points (for u > 0), we see that dr(x) >

the fixed point at x =—[u is a repellor, while the fixed point at x =+Ju isa dx

node. A1) <0
If we start with i < 0 and let it increase, we find that a bifurcation takes place

at 4= 0. At that value of the parameter we have a saddle point, which then changes M) >0

into a repellor-node pair as u becomes positive. We say that we have a repellor-

node bifurcation at ji = 0.

Fig. 3.14. The bifurcation diagram for the repellor-node (saddle-node) bifurcation. The solid
line indicates the x value for the node as a function of the parameter value. The dashed line is
for the repellor. Note that there is no fixed point at all for < 0. u=0

l u<0 4 1 o '\
/f\ bifurcation point /7

Nota: Note that at the repellor-node bifurcation point, the fixed point of the
system is structurally unstable in the sense discussed in Section 3.6. Structurally Y

unstable points are important because their existence indicates a possible . _
bifurcation. Ria




In the nonlinear dynamics literature, the bifurcation just described is usually
called a saddle-node bifurcation, tangent bifurcation, or a fold bifurcation. The
origin of these names will become apparem when we see analogous bifurcations in
higher-dimensional state spaces. For example, if we imagine the curves in Fig.
3.14 as being the cross section of a piece of paper extending into and out of the
plane of the page, then the bifurcation point represents a “fold” in the piece of
paper. Also, Fig. 3.5 shows how the function in question becomes tangent to the x
axis at the bifurcation point.

AX) No Fixed Point

@ U
X % fX) | Saddle Point

(b) \/' x/ %
X (c) \f\_} X/

Node

£X) Repellor

Fig. 3.5. In one-dimensional state spaces, a saddle point, the point X, in (b), is structurally
unstable. A small change in the function f{X), for example pushing it up or down along the
vertical axis, either removes the fixed point (a), or changes it into a node and a repellor (c).



Biforcazioni in 2D

Limit Cycle Bifurcations
As we saw earlier, a fixed point in a two-dimensional state space may also have
complex-valued characteristic values for which the trajectories have spiral-type
behavior. A bifurcation occurs when the characteristic values move from the left-
hand side of the complex plane to the right-hand side; that is, the bifurcation occurs
when the real part of the characteristic value goes to 0.

We can also have limit cycle behavior in two-dimensional systems. The birth
and death of a limit cycle are bifurcation events. The birth of a stable limit cycle is

s called a Hopf bifurcation (named after the mathematician E. Hopf). (Although this

type of bifurcation was known and understood by Poincaré and later studied by the
Russian mathematician A. D. Andronov in the 1930s, Hopf was the first to extend
these ideas to higher-dimensional state spaces.) Since we can use a Poincaré
section to study a limit cycle and since for a two-dimensional state space, the
Poincaré section is just a line segment, the bifurcations of limit cycles can be
studied by the same methods used for studying bifurcations of one-dimensional
dynamical systems.

A Hopf bifurcation can be modeled using the following normal form
equations:

X =—x, +x{u-(x +x7)} (3.17-5a)

X, =+x+x, (- (x +x3)) (3.17-5b)
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X =-x+x{u-(x +x3)) (3.17-5a)

X, =+x +x,{u-(x +x7)) (3.17-5b)

The geometric form of the trajectories is clearer if we change from (x), xp)
coordinates to polar coordinates (r,6) defined in the following equations and

illustrated in Fig. 3.18.
r= ,/(x,z + xzz)

(3.17-6)
tan@ = 2
X
Using these polar coordinates, we write Egs. (3.17-5) as
F=r{u-r*}= f(r) (3.17-7a)
6=1 —> 0(t)=0, +t (3.17-7b)

Fig. 3.18. The definition of polar coordinates. r is
the length of the radius vector from the origin. 0 is
the angle between the radius vector and the positive
X axis.




Now let us interpret the geometric nature of the trajectories that follow from
Egs. (3.17-7). The solution to Eq. (3.17-7b) is simply

(1) =0, +1 . (3.17-8)

that is, the angle continues to increase with time as the trajectory spirals around the
origin. For|u < 0, there is just one fixed point for r, namely r = 0. By evaluating
the derivative of f{r) with respect to r at r = 0, we see that the characteristic value is
equal to y. Thus, for u < 0, that derivative is negative, and the fixed point is stable.
In fact, it is a spiral node.

For|{u > 0/ the fixed point at the origin is a spiral repellor; it is unstable;
trajectories starting near the origin spiral away from it. There is, however, another
fixed point for r, namely, r = J;I . This fixed point for r corresponds to a limit
cycle with a period of 27 [in the time units of Egs. (3.17-7)]. We say that the limit
cycle is born at the bifurcation value u = 0. Fig. 3.19 shows the bifurcation
diagram for the Hopf bifurcation.

Fig. 3.19. x, | limitcycle F=r{u-r*)= f(r)
spiral

\ f(ry - H spiral node repellor 6=1

<0
l

f(’) ”>‘0‘

\
/x Hopf
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3.18 Summary

In this chapter we have developed much of the mathematical machinery needed to
discuss the behavior of dynamical systems. We have seen that fixed points and
their characteristic values (determined by derivatives of the functions describing the
dynamics of the system) are crucial for understanding the dynamics. We have also
seen that the dimensionality of the state space plays a major role in determining the
kinds of trajectories that can occur for bounded systems.
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3.18 Summary

In this chapter we have developed much of the mathematical machinery needed to
discuss the behavior of dynamical systems. We have seen that fixed points and
their characteristic values (determined by derivatives of the functions describing the
dynamics of the system) are crucial for understanding the dynamics. We have also
seen that the dimensionality of the state space plays a major role in determining the
kinds of trajectories that can occur for bounded systems.

Moreover, as the control parameters of a system change, the character of fixed
points and the nature of trajectories near them can change dramatically at
bifurcation points. Bifurcation diagrams are used to describe the change in
behavior near bifurcation points. We again saw that the dimensionality of the state
space limits the kinds of bifurcations that can commonly occur.

Hopf Bifurcation (2D)

Space State
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Tangent Bifurcation (1D)
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3.18 Summary

In this chapter we have developed much of the mathematical machinery needed to
discuss the behavior of dynamical systems. We have seen that fixed points and
their characteristic values (determined by derivatives of the functions describing the
dynamics of the system) are crucial for understanding the dynamics. We have also
seen that the dimensionality of the state space plays a major role in determining the
kinds of trajectories that can occur for bounded systems.

Moreover, as the control parameters of a sjstem change, the character of fixed
points and the nature of trajectories near them can change dramatically at
bifurcation points. Bifurcation diagrams are used to describe the change in

behavior near bifurcation points. We again saw that the dimensionality of the state
space limits the kinds of bifurcations that can commonly occur.

In state spaces with two or more dimensions, limit cycles, describing periodic
behavior, can appear. The stability of a limit cycle can be discussed by means of a
Poincaré section and the characteristic multiplier determined by the derivative of
the corresponding Poincaré map function. A limit cycle may be born via a Hopf
bifurcation.
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3.18 Summary

In this chapter we have developed much of the mathematical machinery needed to
discuss the behavior of dynamical systems. We have seen that fixed points and
their characteristic values (determined by derivatives of the functions describing the
dynamics of the system) are crucial for understanding the dynamics. We have also
seen that the dimensionality of the state space plays a major role in determining the
kinds of trajectories that can occur for bounded systems.

Moreover, as the control parameters of a system change, the character of fixed
points and the nature of trajectories near them can change dramatically at
bifurcation points. Bifurcation diagrams are used to describe the change in
behavior near bifurcation points. We again saw that the dimensionality of the state
space limits the kinds of bifurcations that can commonly occur.

In state spaces with two or more dimensions, limit cycles, describing periodic
behavior, can appear. The stability of a limit cycle can be discussed by means of a
Poincaré section and the characteristic multiplier determined by the derivative of
the corresponding Poincaré map function. A limit cycle may be born via a Hopf
bifurcation.

In a two-dimensional state space the possible types of bifurcations are also
limited. As explained in Appendix B, the saddle-node bifurcation and the Hopf
bifurcation are the most “common” two-dimensional bifurcations for models with
one control parameter. As we shall see in the next chapter, once we move to a state
space with three or more dimensions the number of common bifurcations increases
tremendously.




Ex.1 ROMEO E GIULIETTA

Il libro di Strogatz suggerisce di studiare, come esercizio, un sistema dinamico lineare a due
dimensioni che descrive, al variare dei parametri, la variazione temporale dell’amore o
dell’odio tra due partner coinvolti in una relazione romantica. '

Definiamo x(t) come I'amore (o l'odio nel caso in cui sia negativo) di Romeo nei 'A
confronti di Giulietta al tempo “t” e y(t) 'amore (o l'odio) di Giulietta nei |
confronti di Romeo. Cosi abbiamo le seguenti due equazioni differenziali del

primo ordine: Romeo X = ax+ by

Giulietta y=cx+dy

“un
a

| parametri e “b” stabiliscono il comportamento di Romeo mentre “c” e “d” quello di
Giulietta; “a” descrive l'attrazione di Romeo causata dai suoi stessi sentimenti, mentre “b”
I'attrazione causata dai sentimenti di Giulietta, e lo stesso vale per Giulietta. Ad esempio,
Romeo pud mostrare 4 comportamenti diversi in base al segno dei parametri “a” e “b”:
Appassionato: a>0; b>0 (Romeo e spinto dai suoi stessi sentimenti cosi come
da quelli di Giulietta)

Narcisistico: a>0; b<O (Romeo e spinto ancora dai suoi sentimenti ma indietreggia a causa dei
sentimenti di Giulietta)

Amanti prudenti: a<0; b>0 (Romeo si tira indietro sui suoi stessi sentimenti ma e incoraggiato
da Giulietta)

Eremita: a<0; b<0 (Romeo si tira indietro sui suoi stessi sentimenti cosi come da Giulietta)

Esercizio:
Esplorare il modello sia analiticamente che con l'aiuto di NetLogo in corrispondenza di diversi
valori dei parametri



Ex.2 LA GLICOLISI

In the fundamental biochemical process called glycolysis, living cells obtain en-
ergy by breaking down sugar. In intact yeast cells as well as in yeast or muscle ex-
tracts, glycolysis can proceed in an oscillatory fashion, with the concentrations of
various intermediates waxing and waning with a period of several minutes. For re-
views, see Chance et al. (1973) or Goldbeter (1980).

A simple model of these oscillations has been proposed by Sel’kov (1968) In
dimensionless form, the equations are

. 2 H H AUP H E H
x=—-x+ay+x L K Y =
) 4 Y Valori tipici: a=0.08, b=0.6 o' on  esooms Q‘“

y=b—ay—x2y H OH H OH

Glucosio Glucosio-6-fosfato

where x and y are the concentrations of ADP (adenosine diphosphate) and F6P
(fructose-6-phosphate), and a,b >0 are kinetic parameters.
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Sullo Strogatz potete trovare molti
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