Classificazione dei Sistemi Dinamici

X = f(X)

’ 4

Flussi Dissipativi

|

Attrattori

1D

Punto <D

fisso  ciclo
Limite



Flussi dissipativi
in
una dimensione

1 dL daf(X)
—_—==|f(X X <0
o L[f( )= f(X,)]= =
fixed points (dim.0)
S0 e f0 £%)
saddle |
x>0 X.*x -‘<0 /X +x \j
— g — s
v \Geo X / N X
repellor




Flussi dissipativi
in
due dimensioni

1dA _ of 3],

<0
Ad X, X,

fixed points (dim.0) limit cycles (dim.1)

L@ .
N(IDE SPIRAL SADDLE (X P

\ﬂ[& < &,

REPELLOR SPIRAL
REPELLOR



Biforcazioni

1D-2D: Repellor-Node (or Saddle- 2D: Hopf Bifurcation
Node or Tangent) Bifurcation

X, limit cycle
ﬂx) No Fixed Point

spiral node
() U %
X £X l
)

X, @ N\ \ / X,

Node 3D:... (Rotte verso il Caos...)




Classificazione dei Sistemi Dinamici

X = f(X)

’ 4

Flussi Dissipativi

|

Attrattori

1D

p 2D
unto 3D

fisso  cCiclo

Limite Caotici



Flussi dissipativi
in
~ tre dimensioni

condizioni iniziali

1dV &of
—— —_ = d" < 0
\\ Vi %o v(f)
|
:
\\ 1 -
- \‘\\‘ fixed points (dim.0)
SO - \\ \\\‘
RN limit cycles (dim.1)

ATTRATTORI -+
quasiperiodic attractors (dim.2)

chaotic attractors (fractal dimension between 2 and 3)



4

Three-Dimensional State Space and Chaos

4.1 Overview

In the previous chapter, we introduced some of the standard methods for analyzing
dynamical systems described by systems of ordinary differential equations, but we
limited the discussion to state spaces with one or two dimensions. We are now
ready to take the important step to three dimensions. This is a crucial step, not
because we live in a three-dimensional world (remember that we are talking about
state space, not physical space), but because in three dimensions dynamical systems
can behave in ways that are not possible in one or two dimensions. Foremost
among these new possibilities is|chaos.

First we will give a hand-waving argument (we could call it heuristic if we
wanted to sound more sophisticated) that shows why chaotic behavior may occur in
three dimensions. We will then discuss, in parallel with the treatment of the
previous chapter, a classification of the types of fixed points that occur in three

dimensions. However, we gradually wean ourselves from the standard analytic

techniques and begin to rely more and more on graphic and geometrical
(topological) arguments. This change reflects the flavor of current developments in
dynamical systems theory. In fact, the main goal of this chapter is to develop
geometrical pictures of trajectories, attractors, and bifurcations in three-dimensional
state spaces.



4.2 Heuristics

We will describe, in a rather loose way, why three (or more) state space dimensions
are needed to have chaotic behavior. First, we should remind ourselves that we are
dealing with dissipative systems whose trajectories eventually approach an
attractor. For the moment we are concerned only with the trajectories that have
settled into the attracting region of state space. When we write about the divergence
of nearby trajectories, we are concerned with the behavior of trajectories within the
attracting region of state space.

In a somewhat different context we will need to consider sensitive
dependence on initial conditions. Initial conditions that are not, in general, part of
an attractor can lead to very different long-term behaviors on different attractors.
Those behaviors, determined by the nature of the attractor (or attractors), might be
time-independent or periodic or chaotic.

As we saw in Chapter 1, chaotic behavior is characterized by the divergence
of nearby trajectories in state space. As a function of time, the “separation”
(suitably defined) between two nearby trajectories increases exponentially, at least
for short times. The last restriction is necessary because we are concerned with

systems whose trajectories stay within some bounded region of state space. The
system does not “blow up.” There are three requirements for chaotic behavior in
such a situation:

1. no intersection of different trajectories;
2. bounded trajectories;
3. exponential divergence of nearby trajectories.



These conditions cannot be satisfied simultaneously in one- or two-
dimensional state spaces. You should convince yourself that this is true by
sketching some trajectories in a two-dimensional state space on a sheet of paper.
However, in three dimensions, initially nearby trajectories can continue to diverge
by wrapping over and under each other. Obviously sketching three-dimensional
trajectories is more difficult. You might try using some relatively stiff wire to form
some trajectories in three dimensions to show that all three requirements for chaotic
behavior can be met. You should quickly discover that these requirements lead to
trajectories that initially diverge, then curve back through the state space, forming
in the process an intricate layered structure. Figure 4.1 is a sketch of diverging
trajectories in a three-dimensional state space.

Fig. 4.1, A sketch of trajectories in a three-dimensional state space. Notice how two nearby
trajectories can continue to behave quite differently from each other yet remain bounded by
weaving in and out and over and under each other.



The crucial feature of state space with three or more dimensions that permits
chaotic behavior is the ability of trajectories to remain within some bounded region
by intertwining and wrapping around each other (without intersecting!) and without
repeating themselves exactly. Clearly the geometry associated with such
trajectories is going to be strange. In fact, such attractors are now called strange
attractors. In Chapter 9, we will give a more precise definition of a strange
attractor in terms of the notion of fractal dimension. If the behavior on the attractor
is chaotic, that is, if the trajectories on the attractor display exponential divergence
of nearby trajectories (on the average), then we say the attractor is chaotic. Many
authors use the terms strange artractor and chaotic attractor interchangeably, but
in principle they are distinct [GOP84].

The notion of exponential divergence of nearby trajectories is made formal by
introducing the Lyapunov exponent. If two nearby trajectories on a chaotic
attractor start off with a separation d, at time ¢ = 0, then the trajectories diverge so
that their separation at time #, denoted by d(r), satisfies the expression

d(t) =dye” (4.2-1)

The parameter A in Eq. (4.2-1) is called the Lyapunov exponent for the
trajectories. If A is positive, then we say the behavior is chaotic. (Section 4.13
takes up the question of Lyapunov exponents in more detail.) From this definition
of chaotic behavior, we see that chaos is a property of a collection of trajectories.



Chaos, however, also appears in the behavior of a single trajectory. As the
trajectory wanders through the (chaotic) attractor in state space, it will eventually
return near some point it previously visited. (Of course, it cannot return exactly to
that point. If it did, then the trajectory would be periodic.) If the trajectories exhibit
exponential divergence, then the trajectory on its second visit to a particular
neighborhood will have subsequent behavior, quite different from its behavior on
the first visit. Thus, the impression of the time record of this behavior will be one of
nonreproducibility, nonperiodicity, in short, of chaos.

The point of these remarks is to remind us that our notions of sensitive
dependence on initial conditions and divergence of nearby trajectories are
meaningful and useful only for those systems that are bounded and have attractors
in the sense defined in Chapter 3. (In Chapter 8, we shall see how to generalize
these ideas to bounded Hamiltonian systems for which there is no dissipation and
no attractor.) I




4.4 Three-Dimensional Dynamical Systems

We will now introduce some of the formalism for the description of a dynamical
system with three state variables. We call a dynamical system three-dimensional if
it has three independent dynamical variables, the values of which at a given instant
of time uniquely specify the state of the system. We assume that we can write the
time-evolution equations for the system in the form of the standard set of first-order
ordinary differential equations. (Dynamical systems modeled by iterated map
functions will be discussed in Chapter 5.) Here we will use x with a subscript 1, 2,
or 3 to identify the variables. This formalism can then easily be generalized to any
number of dimensions simply by increasing the numerical range of the subscripts.
The differential equations take the form

P i = £
Y =-XZ+rX - = % = H(0,x,x) (4.4-1)
Z=XY-bZ X = fi(x,%,%)

The Lorenz model equations of Chapter 1 are of this form. Note that the three
functions f,, f;, and f; do not involve time explicitly; again, we say that the system
IS autonomous.

As an aside, we note that some authors like to use a symbolic “vector” form to
write the system of equations:

x = f(%) (4.4-2)

Here x stands for the three symbols x,,x, x,, and f stands for the three functions
on the right-hand side of Egs. (4.4-1).



The differential equations describing two-dimensional systems subject to a

time-dependent “‘force” (and hence nonautonomous) can also be written in the form
of Eq. (4.4-1) by making use of the “trick” introduced in Chapter 3: Suppose that
the two-dimensional system is described by equations of the form

% = f1(x,x,,1)

, (4.4-3)
xz - fz(xl 9x2vt)

The trick is to introduce a third variable, x3=t. The three “autonomous” equations

then become

x5 = f(x,%,x)
Xy = fo(%0%30 %) (4.4-4)
X =1

which are of the same form as Eq. (4.4-1). As we shall see, this trick is particularly
useful when the time-dependent term is periodic in time.

Exercise 4.4-1. The “forced” van der Pol equation is used to describe an
electronic triode tube circuit subject to a periodic electrical signal. The
equation for g(z), the charge oscillating in the circuit, can be put in the
form

d*q dq :

-dt—2+7(¢1)§';+4(1) = gsinwt

Use the trick introduced earlier to write this equation in the standard form
of Eq. (4.4-1).




4.5 Fixed Points in Three Dimensions (dim = 0)

The fixed points of the system of Egs. (4.4-1) are found, of course, by setting the
three time derivatives equal to 0. [Two-dimensional forced systems, even if written
in the three-dimensional form (4.4-4), do not have any fixed points because, as the
last of Eqs. (4.4-4) shows, we never have x; =¢=0 . Thus, we will need other
techniques to deal with them.] The nature of each of the fixed points is determined
by the three characteristic values of the Jacobian matrix of partial derivatives
evaluated at the fixed point in question. The Jacobian matrix is

(o o o)
dx, OJx, Ox,
Jd, o, I
| 9 5-1
TRl O =0
of, 9
Laxl ox, ax:)

In finding the characteristic values of this matrix, we will generally have a cubic
equation, whose roots will be the three characteristic values labeled A,,4,,4; .




Some mathematical details: The standard theory of cubic equations tells us
that a cubic equation of the form

A+ pAt+gAi+r=0

can be changed to the “standard” form

by the use of the substitutions

If we now introduce

X+ax+b=0

x=A+p/3

1

=—(3g - p?
a 3(4 p°)

|
b=—2p>-9gp+27r
27( p qp )

|
A=(-b/2+s)
|
B =(-b/2-+s5)}

(4.5-2)

(4.5-3)

(4.5-4)

(4.5-5)



the three roots of the x equation can be written as

A =
A, =

2, =

1
-(

A+B)

2

A+B)

2

A+ B

/

/

-+

(A-B)

| e
(A-B)

s o i

J-3
J-3

(4.5-6)

from which the characteristic values for the matrix can be found by working back
through the set of substitutions. Most readers will be greatly relieved to know that
we will not make explicit use of these equations. But it is important to know the

form of the solutions.
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the three roots of the x equation can be written as

A = A+B
\ (A-B)
A,= <AL ST (4.5-6)
2 J\ 2 )
\ (A-8B)
A, = _A+B_A_B_J:3-
2)k2)

from which the characteristic values for the matrix can be found by working back
through the set of substitutions. Most readers will be greatly relieved to know that
we will not make explicit use of these equations. But it is important to know the
form of the solutions.

There are three cases to consider:

um—

“standard” form L.
X’ +ax+b=0 |2

The three characteristic values are real and unequal (s < 0).

. The three characteristic values are real and at least two are equal (s =
~ 0).
- i 3 ﬂf_ 3. There is one real characteristic value and two complex conjugate
427 values (s > 0).

Case 2 is just a borderline case and need not be treated separately.



Punti Fissi in uno Spazio degli Stati a Tre Dimensioni

The four basic types of fixed points for a three-dimensional state space are:

(1.) Node. All the characteristic values are real and negative. All trajectories in the
neighborhood of the node are attracted toward the fixed point without looping
around the fixed point.

Is. Spiral Node. All the characteristic values have negative real parts but two

of them have nonzero imaginary parts (and in fact form a complex
conjugate pair). The trajectories spiral around the node on a “surface™ as

they approach the node.
Equazione caratteristica: * / I
3 2 . The three characteristic values are
A+pA +gA+r=0 _/’,;‘"' Node real and unequal (s < 0).
00—
“standard”’ form R
X’ +ax+b=0
[
Spiral Node There is one real characteristic value
bz as \ and two complex conjugate values (s > 0).
=| —+ — ®
4 27 -

e R



Punti Fissi in uno Spazio degli Stati a Tre Dimensioni

The four basic types of fixed points for a three-dimensional state space are:

Repellor. All the characteristic values are real and positive. All trajectories in

the neighborhood of the repellor diverge from the repellor.

2s. Spiral Repellor. All the characteristic values have positive real parts, but
two of them have nonzero imaginary parts (and in fact form a complex
conjugate pair). Trajectories spiral around the repellor (on a “surface™) as
they are repelled from the fixed point.

Equazione caratteristica: T/' I
3 2 The three characteristic values are
A+ pAi+qA+r=0 <«— o~ Repellor real and unequal (s < 0).

“}

— oo
“standard”’ form R
xX’+ax+b=0 I
Spiral Revell There is one real characteristic value
: ; * piral Repellor and two complex conjugate values (s > 0).
4 27 *
P R




Punti Fissi in uno Spazio degli Stati a Tre Dimensioni

For state spaces with three or more dimensions, it is common to specify the
so-called index of a fixed point.

The index of a fixed point is defined to be the number of characteristic
values of that fixed point whose real parts are positive.

In more geometric terms, the index is equal to the spatial dimension of the out-set
of that fixed point. For a node (which does not have an out-set), the index is equal
to 0. For a repellor, the index is equal to 3 for a three-dimensional state space. A
saddle point can have either an index of 1, if the out-set is a curve, or an index of 2,
if the out-set is a surface as shown in Fig. 4.3.

Index=0 Index =3

—bi‘q/— Node < '/'$ Repellor
AL




Punti Fissi in uno Spazio degli Stati a Tre Dimensioni

Saddle point — index~1. All characteristic values are real. One is positive

and two are negative. Trajectories approach the saddle point on a surface (the

in-set) and diverge along a curve (the out-set).

3s. Spiral Saddle Point — index—I. The two characteristic values with
negative real parts form a complex conjugate pair. Trajectories spiral
around the saddle point as they approach on the in-set surface.

Saddle point — index-2. All characteristic values are real. Two are positive

and one is negative. Trajectories approach the saddle point on a curve (the in-

set) and diverge from the saddle point on a surface (the out-set).

4s. Spiral Saddle Point — index-2. The two characteristic values with
positive real parts form a complex conjugate pair. Trajectories spiral
around the saddle point on a surface (the outi-sct) as thcy diverge from the

saddle pofﬁ{. /
[ I -
< o —| Saddle Point The three characteristic values are
/' Index 1 real and unequal (s < 0).
- /4
e R ——— ——
/ R
.1t |
. The three characteristic values are
‘;I‘ ISnac(li:lxe2Pomt real and unequal (s < 0).
R




4.6 Limit Cycles and Poincaré Sections (dim = 1)

As we saw in Chapter 3, dynamical systems in two (and higher) dimensions can
also settle into long-term behavior associated with repetitive, periodic limit cycles.
We also learned that the Poincaré section technique can be used to reduce the
dimensionality of the description of these limit cycles and to make their analysis
simpler.

First, we focus on the construction of a Poincaré section for the system. For a
three-dimensional state space, the Poincaré section is generated by choosing a
Poincaré plane (a two-dimensional surface) and recording on that surface the
points at which a given trajectory cuts through that surface. (In most cases the
choice of plane is not crucial as long as the trajectories cut the surface transversely,
that is, the trajectories do not run parallel or almost parallel to the surface as they
pass through; see Fig. 4.4.) For autonomous systems, such as the Lorenz model

equations, we choose some convenient plane in the state space, say, the XY plane
for the Lorenz equations. When a trajectory crosses that plane passing from, for
example, negative Z values to positive Z values, we record that crossing point.

g

-~ 4—— Poincaré Plane —»

Xy \ X2
X, X

Fig. 44. A Poincaré section for a three-dimensional state space. On the left the trajectory
crosses the Poincaré plane transversely. On the right the intersection is not transverse
because the trajectory runs parallel to the plane for some distance.



In later discussions, it will be useful to indicate on the Poincaré section the
record of trajectory intersections with the plane as trajectories approach or
diverge from the periodic points. For example, Fig. 4.6 shows a sequence
of points Py, P, P,, . . . as a trajectory approaches an attracting limit cycle |
| in a three-dimensional state space. (Compare Fig. 4.6 with Fig. 3.13.)
| The reader should be warned that in some diagrams found in the literature
this series of dots will be connected with a smooth curve intersecting (x;",

x; ). It is important to remember that this curve is not a trajectory. In fact

the Poincaré intersection of any single trajectory is just a sequence of

points as shown in Fig. 4.6. If a smooth curve is drawn on this kind of

diagram, it represents the intersection points of an infinite family of

trajectories, all of which are approaching (x,’, x, ). Later we shall see

| cases in which such curves intersect. It is important to remember that this

| intersection does not violate the No-Intersection Theorem because the |
intersecting curves in this case are not themselves trajectories.

B [ — 1™
px 0.500
Poincaré Plane\ | ; "
\‘ R 2

000

Fig. 4.6. The sequence of points Py, Py, Ps, . . . is the record of successive intersections of a
single trajectory with the Poincaré plane (the plane with x; = 0) as the trajectory goes from x;
>0tox;<0.




MAPPA DI POINCARE’ 2D PER LO STUDIO DELLA STABILITA’ DEI CICLI LIMITE IN 3D

We now return to the general discussion of limit cycles. The stability of the
limit cycle is determined by a generalization of the Poincaré multipliers introduced
in the previous chapter. We assume that the uniqueness of the solutions to the
equations used to describe the dynamical system entails the existence of a Poincaré
map function (or in the present case, a pair of Poincaré map functions), which relate
the coordinates of one point at which the trajectory crosses the Poincaré plane to the
coordinates of the next (in time) crossing point. (Again we assume we have chosen
a definite crossing sense; e.g., from top to bottom, or from left to right.) These
functions take the form

" = F(4”.x") mappa di (4.6-1)

B = FK(x™,x") Poincare 2 dim

where the parenthetical superscript indicates the crossing point number.

Here these Poincaré map functions have arisen from the consideration of a
Poincaré section for trajectories arising from a set of differential equations. In
Chapter 5, we shall consider such map functions as interesting models in their own
right, independent of this particular heritage.

The fixed points of the Poincaré section are those points that satisfy

o F'(x'.'x’.) (4.6-2)
x = F(x,x)

Each fixed point in the Poincaré section corresponds to a limit cycle in the full
three-dimensional state space.



MAPPA DI POINCARE’ 2D PER LO STUDIO DELLA STABILITA’ DEI CICLI LIMITE IN 3D

We can characterize the stability of these fixed points by finding the
characteristic values of the associated Jacobian matrix of derivatives [sometimes
called the Floquet matrix, after Gaston Floquet (1847-1920), a French
mathematician who studied, among other things, the properties of differential
equations with periodic terms]. This matrix is analogous to the Jacobian matrix
used to determine the characteristic values of a fixed point in the full state space.

The Jacobian matrix JM is given by

mappa 1 dim (9F  OF )
2 siet] St ¥
d,=Md, D, o dx, Ox,
d,,=M"d, | ) 9F, OF,
\I\—/ f | 9% Ox, |

mappa 2 dim

— " 4.6-3
M, (4.6-3)

_ where the matrix is to be evaluated at the Poincaré map fixed point in question.
The characteristic values of this matrix determine the stability of the limit cycle. A

" stable limit cycle attracts nearby trajectories, while an unstable limit cycle repels
nearby trajectories. In principle, we can use the mathematical methods given in
Chapter 3 to find these characteristic values. In practice, however, we most often

cannot find these characteristic values explicitly, since, to do that, we would need to
know the exact form of the Poincaré map function, and in most cases, we do not
know that function. [In Chapter 5, we will examine some models that do give us
the map function directly. However, for systems described by differential
equations in state spaces of three (or more) dimensions, it is in general impossible

to find the map functions.)



Since the Jacobian matrix is a 2X2 matrix for a Poincaré section in a three-
dimensional state space, the fixed point has two characteristic values. Hence, we ...
have the same set of stability cases here that we had for fixed points in a two-
dimensional state space, with one addition: The intersection points may alternate
from one side of the fixed point to the other. (Recall that this alternation was not
possible in two dimensions because the trajectory would have to cross itself. In
three dimensions the trajectory can wind over and under itself to give the
alternation without intersection.)

Dissipation

For a 2x2 matrix, there are two characteristic values. We denote the characteristic
values as M, and M, since we use them as Flogquet multipliers in determining how
trajectories approach or diverge from the Poincaré intersection point of the limit
cycle. Just as for Poincaré sections in a two-dimensional state space, the criterion
for dissipation can be formulated in terms of the multipliers since dissipation is
linked to the contraction of clusters of initial conditions. Because M,, the first
multiplier, determines the expansion in the x, direction and M, the expansion in the
x, direction, we see that the product M, M, determines the expansion or contraction
of areas in the Poincaré plane. For a dissipative system, we must have M\M, < |
on the average (not only near the fixed points). In Chapter 8, we shall consider
model map systems that preserve state-space area. They have MM, = 1.




Stability of Limit Cycles
As we saw in two-dimensional systems, if the fixed point is to be stable and have
trajectories in its neighborhood attracted to it, then the absolute value of each
multiplier must be less than 1. [In state spaces with three or more dimensions, we
can have so the stability criterion is formulated using the absolute value of
the multipliers.]

The types of limit cycles are

— mappa 1 dim

L Stable limit cycle (node for the Poincaré map) T

- IL Repelling limit cycle (repellor for the Poincaré map) - :
[1L. Saddle cycle (saddle point for the Poincaré map) d,,=M"d,

Table 4.2 lists the categories of characteristic multipliers, the associated
Poincaré plane fixed points and the corresponding limit cycles for three-
dimensional state spaces. (Compare this table to Table 3.4 for limit cycles in two-
dimensional state spaces.)

Table 4.2
Characteristic Multipliers for Poincaré Sectlons
of Three-Dimensional State Spaces
Type of Fixed Point  Characteristic Multiplier  Corresponding Cycle
Node l F 1 Limit Cycle
Repellor M, > 1 Repelling Cycle
Saddle M| <1, IM |>1 Saddle Cycle




Of course, the characteristic multipliers could also be complex numbers. Just
as we saw for fixed points in a two-dimensional state space, the complex
multipliers will form a complex-conjugate pair. In more graphic terms, the
successive Poincaré intersection points associated with complex-valued multipliers
rotate around the limit cycle intersection point as they approach or diverge from
that point. Mathematically, the condition for stability is still the same: the absclute
value of both multipliers must be less than | for a stable limit cycle. In terms of the
corresponding Argand diagram (complex mathematical plane), both characteristic
values must lie within a circle of unit radius (called the unif circle) for a stable limit
cycle. See Fig. 4.7. As a control parameter is changed the values of the
characteristic multipliers can change. If at least one of the characteristic multipliers
crosses the unit circle, a bifurcation occurs. Some of these bifurcations will be
discussed in the latter part of this chapter.

ImM

UNIT CIRCLE

1

Re M



Repelling
Limit Cycles

CARUAES

Saddle
Limit Cycles

M |<1,IM,]|>1

Stable
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M. [,IM,] <1

ImM

Saddle
Re M

Sezione di Poincare

1
) 0.500
PI “%/ ) 0.000
1.500
1000

Unstable Manifold

000

x2

Poincaré Plane

Saddle Point

Saddle Cycle—Y

Stable Manifold

Fig. 4.7. Characteristic multipliers in the complex plane. If both multipliers lie within a
circle of unit radius (the unit circle), then the corresponding limit cycle is stable. If one (or

both) of the multipliers lies outside the unit circle, then the limit cycle is unstable.



4.7 Quasi-Periodic Behavior (dim = 2)

For a three-dimensional state space, a new type of motion can occur, a type of
motion not possible in one- or two-dimensional state spaces. This new type of
motion is called quasi-periodic because it has two different frequencies associated
with it; that is, it can be analyzed into two independent, periodic motions. For
quasi-periodic motion, the trajectories are constrained to the surface of a torus in the
three-dimensional state space. A mathematical description of this kind of motion is

given by' NOE_SONO EQUAZIONI DIFFERENZIALI!

X, =(R+rsinw, 1)coswyt
X, = rcosw,t (4.7-1)
X, =(R+rsinw,1)sinw,t

EQ. TRAIETTORIA
x1(t), x2(t) e x;3(t)

where the two angular frequencies are denoted by @, and @, . Geometrically, Eqs.
(4.7-1) describe motion on the surface of a torus (with the center of the torus at the
origin), whose large radius is R and whose cross-sectional radius is r. In general the
torus (or doughnut-shape or the shape of the inner tube of a bicycle tire) will look
something like Fig. 4.8. The frequency @, corresponds to the rate of rotation
around the large circumference with a period 7, = 27/w, , while the frequency
@, corresponds to the rate of rotation about the cross section with 7, =2n/w, . A
general torus might have elliptical cross sections, but the ellipses can be made into
circles by suitably rescaling the coordinate axes. torus R

minor radius

Fig. 48. Quasi-periodic trajectories roam over the surface of a torus in three-dimensional
state space. llustrated here is the special case of a torus with circular cross sections. ris the
minor radius of the cross section. R is the major radius of the torus. A periodic trajectory on
the surface of the torus would close on itself. On the right. a perspective view of a torus and
a Poincaré plane.

major radius



The Poincaré section for this motion is generated by using a Poincaré plane
that cuts through the torus. What the pattern of Poincaré map points looks like
depends on the numerical relationship between the two frequencies as illustrated in
Fig. 4.9. If the ratio of the two frequencies can be expressed as the ratio of two
integers (that is, as a “rational fraction,” 14/17, for example), then the Poincaré
section will consist of a finite number of points. This type of motion is often called
Jrequency-locked motion because one of the frequencies is locked, often over a
finite control parameter range, so that an integer multiple of one frequency is equal
to ancther integer multiple of the other. (The terms phase-locking and mode-
locking are also used to describe this behavior.)

Periodic
0] . %2
R razionale m
@ /

r N

X

Sezione di
Poincare

Fig. 4.9. A Poincaré section intersects a torus in three-dimensional state space. The diagram
on the upper left shows the Poincaré map points for a two-frequency periodic system with a
rational ratio of frequencies. The intersection points are indicated by asterisks. The diagram
on the lower left is for quasi-periodic behavior. The ratio of frequencies is irrational, and
eventually the intersection points fill in a curve (sometimes called a “drift ring”) in the
Poincaré plane.



If the ratio of frequencies cannot be expressed as a ratio of integers, then the
ratio is called “irrational” (in the mathematical, not the psychological sense). For
the irrational case, the Poincaré map points will eventually fill in a continucus
curve in the Poincaré plane, and the motion is said to be quasi-periodic because the
motion never exactly repeats itself. (Russian mathematicians call this conditionally
periodic. See, for example, [Arnold, 1983]. The term almost periodic is also used
in the mathematical literature.)

In the quasi-periodic case the motion, strictly speaking, never exactly repeats
itself (hence, the modifier quasi), but the motion is not chaotic; it is composed of
two (or more) periodic components, whose presence could be made known by
measuring the frequency spectrum (Fourier power spectrum) of the motion. We
should point cut that detecting the difference between quasi-periodic motion and
motion with a rational ratio of frequencies, when the integers are large, is a delicate
question. Whether a given experiment can distinguish the two cases depends on the
resolution of the experimental equipment. As we shall see later, the behavior of the
system can switch abruptly back and forth between the two cases as a parameter of
the system is varied. The important point is that the attractor for the system is a
two~dimensional surface of the torus for quasi-periodic behavior.
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We have now seen the full panoply of regular (nonchaotic) attractors: fixed
points (dimension 0), limit cycles (dimension 1), and quasi-periodic attractors
(dimension 2 or more). We are ready to begin the discussion of how these
attractors can change into chaotic attractors.

We will give only a brief discussion of the period-doubling, quasi-periodic,
and intermittency routes. These will be discussed in detail in Chapters 5, 6, and 7,
respectively. A discussion of crises will be found in Chapter 7. As we shall see,
the chaotic transient route is more complicated to describe because it requires a
knowledge of what trajectories are doing over a range of state space. We can no
longer focus our attention locally on just a single fixed point or limit cycle.

fixed points (dim.0) quasiperiodic
attractors (dim.2)

*/ limit cycles (dim.1)
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