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Flussi Hamiltoniani
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The evolution of the Hamiltonian system is completely described if the time
dependence of the gs and ps is known. That is, if we know g(r) and p(r) for all ¢
and for all i, then we know everything there is to know about the time behavior of
the system. In the Hamilton formulation, the time-dependence of the gs and ps is
determined by solutions of Hamilton’s equations, which are written in terms of the
derivatives of the Hamiltonian function (or just Hamiltonian, for short) H(q,p),
where the unadorned symbols ¢ and p mean that H depends, in general, on all the g,
and p;. For the simplest cases, the Hamiltonian is just the total mechanical energy
(kinetic energy plus potential energy) of the system, written as a function of the gs
and ps. In any case, Hamilton’s equations are a set of 2N coupled differential
equations (for a system of N degrees of freedom)
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Since the Hamiltonian function value (usually the energy of the system) is a
constant of the motion, a trajectory for a Hamiltonian system cannot go just
anywhere in phase space. It can go only to regions of (g, p) space that have the
same energy value as the initial point of the trajectory. Thus, we say that
trajectories in phase space are confined to a 2N — 1 dimensional constant energy
surface. (Of course, this “surface” may be a multidimensional geometric object in
general.)
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Sistemi Integrabili

The special case we are interested in is a canonical transformation that leads
to a Hamiltonian that depends only on the Jis and not on the 6,s. In that case, for

alli=1,2,..., N, we have 3zione angolo g =6Ha(0,.l)
— ey T - J,
H=H({J) — J,=0;68,®)=w,1+6,0) o __aHe.)
and the Js are the N constants of the motion. ' a6,

A Hamiltonian system that satisfies Eqs. (8.4-3) and (8.4-4) is called
(somewhat unfortunately) an infegrable system. The term integrable comes from
the notion that the action J; can be expressed as an integral over the motion of the
system and that the corresponding equation for 6; can be easily integrated.

1. All one-degree-of-freedom Hamiltonian systems, for which
H is an infinitely differentiable (that is, “analytic””) function
of g and p, are integrable and the corresponding action J
satisfies H = @ J, where @ =9dH [dJ .

2. All Hamiltonian systems for which Hamilton’s equations
are linear in g and p are integrable (via the so-called normal
mode transformations).

3. All Hamiltonian systems with nonlinear Hamilton’s
equations that can be separated into uncoupled one-degree-
of-freedom systems are integrable.
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We will now stu&y two cxam;iks of one-dcgl:ee-of-freedom Hamiltonian
systems and their phase space behavior.

The Simple Harmonic Oscillator

In Exercise 8.2-2, we learned that the Hamiltonian for a one-dimensional simple
harmonic oscillator with mass m and spring constant k is
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where q is the displacement of the oscillator from its equilibrium position. In this
Case, the numerical value of the Hamiltonian is the total mechanical energy of the
system. The corresponding Hamilton’s equations for the time evolution are
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The one (spatial) dimension simple harmonic oscillator model has one degree
of freedom and its phase space is two-dimensional. Since the Hamiltonian is

independent of time, the phase space trajectories must reside on a 2N-1 = 1
dimensional “surface” (i.e., on a curve). The trajectories are closed curves because
the motion is periodic. Each value of the energy is associated with a unique closed
curve.



For the simple harmonic oscillator, we know that the angular frequency of the
oscillatory motion is given by @ = \/k/_m . Since this is a one-degree-of-freedom
system or since Hamilton’s equations are linear, we expect that this system is
integrable. The one constant of the motion is the Hamiltonian (energy) or some

\\ multiple thereof. Hence, we can write the action J as
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punto ellittico IE i p/ﬁm_a) and g /mwlz as the phase space variables, then the

trajectories will be circles with radii equal to JJ . To complete the story, we can
write the original phase space variables p and g in terms of the action-angle
variables (with 8 positive going counterclockwise from the positive g axis):

(8.4-11)

VIO =01 +6(0) p(t) =~2mwJ sin6(t) . p'(t) =+/J sinB(t)
= g(t)=2J | (mw)cosO(t) | q'(t) =/J cosO()

"
As Exercise 8.4-1 shows, the action associated with a closed trajectory is
'\rclated to the phase space area enclosed by the trajectory. In general, we may write

1
J == 4-1
2”§pdq (8.4-12)

where the symbol § means that the integral is taken around the closed path of the
trajectory.
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Il Pendolo Conservativo

One of the most studied and time-honored examples of a Hamiltonian system is the
pendulum. This system consists of a point mass m suspended at the end of a rigid
(but massless) rod of length L. The rod is free to pivot about an axis at the other
end of the rod. To make the system Hamiltonian, we ignore any dissipation due to
friction in the pivot or to air resistance. A picture of this system is shown in Fig.
8.2.

The Hamiltonian for this system is expressed as the sum of kinetic energy of
rotation about the pivot point and gravitational potential energy (relative to the
equilibrium point when the pendulum mass hangs downward):

p2
H =2+ mgL(1-cos6)

8.4-13
2mL ( )

where p, is the angular momentum associated with the rotation about the axis and
g is the acceleration due to gravity. Thus, we see that the pendulum is a one-

degree-of-freedom system (with a two-dimensional phase space). Hence, by the
arguments presented earlier, it is an integrable system with one constant of the
motion, namely its total mechanical energy E.

Eq. di Hamilton Fig. 8.2. A picture of the pendulum. The angle 6
(. 9H is defined relative to the stable equilibrium position. I =
0 = _ _Po Gravity acts downward. 0
dp, mL’
Py = _a_H =—-mgLsin@ ——— 0= p‘92 = —ﬁsinO Pendolo con
L 006 mL asta rigida

m



For a given value of the energy E, we can use Eq. (8.4-13) to solve for the
L momentum

Po = ty[2mL*[E — mgL(1-cos0)] (8.4-14)

m

By convention, the momentum is positive when the pendulum is moving
counterclockwise and negative when the pendulum is moving clockwise. From Eq.
(8.4-14), we see that the momentum has its largest magnitude when € = 0, at the
bottom of the pendulum’s swing. For energies less than 2mgL, the highest point of
the swing occurs when p, = 0 or in terms of the angular displacement from the
vertical line, when E =mgL(l1-cos@). If we allow the pendulum to swing over
the top by giving it sufficient energy (greater than 2mgL), then the minimum of its
momentum magnitude occurs when @ =z at the top of the swing. Eq. (8.4-14)
can be used to plot the phase space trajectories as shown in Fig. 8.3.

I

initial-angular-displacement 0.0 initial-angular-displacement 180.0

initial-velocity 0.0 initial-velocity 0.0




For a given value of the energy E, we can use Eq. (8.4-13) to solve for the
momentum

Py = £\2mI2(E — mgL(1-cos0)] (8.4-14)

By convention, the momentum is positive when the pendulum is moving
counterclockwise and negative when the pendulum is moving clockwise. From Eq.
(8.4-14), we see that the momentum has its largest magnitude when € = 0, at the
bottom of the pendulum’s swing. For energies less than 2mgL, the highest point of
the swing occurs when p, = 0 or in terms of the angular displacement from the
vertical line, when E =mgL(1-cos@). If we allow the pendulum to swing over
the top by giving it sufficient energy (greater than 2mgL), then the minimum of its
momentum magnitude occurs when @ =7 at the top of the swing. Eq. (8.4-14)
can be used to plot the phase space trajectories as shown in Fig. 8.3.

We can find the corresponding action J for the system by integrating the
momentum over one cycle of the motion

J =%Id0\/2mL2[E—mgL(l—cos9)] (8.4-15)

The resulting integral is known as an elliptic integral and is tabulated numerically
in many mathematical handbooks. The important point here is that we can
determine the frequency of the motion, numerically, by using Eq. (8.4-15) with Eq.
(8.4-5). . am H

- 6"=5j—=w(") - W =— - - -
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Spazio delle Fasi 2D del Pendolo Conservativo

(m=g=L=1)

The phase space diagram for the pendulum, shown in Fig. 8.3, is typical of the
phase space diagrams for many integrable Hamiltonian systems. For relatively
small values of the energy, the phase space trajectories are “ellipses” centered on
the origin. At the origin is an elliptic fixed point for the system: If the system starts
with pg = 0 and 6= 0, then it stays there for all time. These ellipses are the “tori”
on which the trajectories live in this two-dimensional phase space.

Eq. di Hamilton

0=2nrw , p,=0

(0]

DetJ =1>0
TrJ =0
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Fig. 8.3. The phase diagram for the pendulum. Angular velocity (vertical axis) is plotted as
a function of angular position (horizontal axis). Each trajectory corresponds to a particular
value of the total mechanical energy of the system. Elliptic fixed points occur at the origin
and at angular positions of +n2x for positive or negative integer n. Hyperbolic (saddle)
points occur at @ = +z . These are indicated by small circles. The trajectories that join the
hyperbolic points are separatrices. Inside the separatrices, the motion is periodic and
oscillatory.  The motion on trajectories outside the separatrices corresponds to
counterclockwise revolutions for § >0 and clockwise revolutions for 6 <0.
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Spazio delle Fasi 2D del Pendolo Conservativo (m=g=L=1)

The phase space diagram for the pendulum, shown in Fig. 8.3, is typical of the
phase space diagrams for many integrable Hamiltonian systems. For relatively
small values of the energy, the phase space trajectories are “ellipses™ centered on
the origin. At the origin is an elliptic fixed point for the system: If the system starts
with pg = 0 and 6@ = 0, then it stays there for all time. These ellipses are the “tori”
on which the trajectories live in this two-dimensional phase space.
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There are also fixed points at pg= 0 and 6 = *az , where 7 is an odd integer.
These fixed points correspond to the pendulum’s standing straight up with the mass
directly above the pivot point. Note that 6 = +;r are physically equivalent points
since they both correspond to the vertical position of the pendulum. However, it is
occasionally useful to allow the angle to increase or decrease without limit to
visualize some aspects of the pendulum’s motion. The physical equivalence shows
up in the periodicity of the trajectory pictures in state space if you shift along the 6
axis by multiples of 2« .

The fixed points corresponding to the inverted vertical position are unstable in
the sense that the slightest deviation from those conditions causes the pendulum to
swing away from the inverted vertical position. These fixed points are called
hyperbolic points for Hamiltonian systems because trajectories in their
neighborhood look like hyperbolas. The fixed points are, of course, saddle points
using the terminology introduced in Chapter 3. Trajectories approach the
hyperbolic point in one direction and are repelled in another direction.

J= 0 1
—cos@ O

0=x02n+ 1m,pg =0

atD

DetJ] =—-1<0
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3
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0=+02n+ 1m,pg =0
TS k0
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The trajectories that lead directly to or directly away from a hyperbolic point
are called separatrices (plural of separatrix) since they separate the phase space
into regions of qualitatively different behavior. (The separatrices are the stable and
unstable manifolds introduced before.) For the pendulum, the trajectories inside the
separatrices correspond to oscillatory motion about the vertically downward
equilibrium point. Trajectories outside the separatrices correspond to “running
modes” in which the pendulum has sufficient energy to swing over the top. One
type of running mode has an angular velocity that is positive (counterclockwise
motion); the other type has a negative angular velocity (clockwise motion). In both
cases, the magnitude of the angle 6 continues to increase with time.

his organization of the phase space by elliptic points surrounded by the
separatrices associated with hyperbolic points is typical for integrable

Hamiltonian systems. The separatrices segregate phase space regions that
correspond to qualitatively different kinds of motion.

Angular Velocity

Separatrici

-1

Separatrici 4

-3
-10.0 -5.0 0.0 50 10.0
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Il Pendolo Forzato-Smorzato

L’equazione pil generale che descrive un pendolo costituito da una massa m
appesa ad un filo inestensibile di lunghezza L e soggetto alla forza gravitazionale,
ad una forza di smorzamento (damping) e ad una forzante esterna (driving), é
quella del cosiddetto 'pendolo\forzato’:

mL>*0 @ mgLsinO@ (1.1)

dove 6 é la fase del pendolo (ossia il suo spostamento angolare dalla posizio-
ne di equilibrio), g 'accelerazione di gravitd, b I'intensitd dello smorzamento e
G = k' - cos wpt la forzante esterna di intensitd k' e frequenza di driving wp.
Attraverso una opportuna scelta dei parametri e riscalando 1'unitd di tempo é
possibile riscrivere ’equazione 1.1 nella sua forma adimensionale (4] :

0 + 86 + sinf = k - cos wpt (1.2)

dove 3 é il nuovo coefficiente di smorzamento e I' = k - cos wpt la forzante di
intensitd k. A questo punto, in funzione dei valori che pué assumere il parametro
(3, possiamo descrivere la dinamica del pendolo forzato dividendola in due cate-
gorie fondamentali: per valori positivi di 3 abbiamo la versione dissipativa, che
presenta svariati punti di contatto (ma anche di divergenza) con quanto visto nel
caso delle mappe dissipative, mentre per valori nulli di 5 abbiamo la versione con-
servativa, che ci permetterd di introdurre nuovi interessanti concetti sui sistemi
dinamici.
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1.2.1 Caso Dissipativo (8 > 0)

Per valori di # > 0, ossia per valori positivi del coefficiente di smorzamento,
’eq.1.1 descrive un sistema dissipativo, la cul energia totale non si conserva nel
tempo: in questo caso, analogamente a quanto abbiamo visto accadere per le map-
pe dissipative studiate nei capitoli precedenti, I’evoluzione asintotica del sistema
non dipende dalle condizioni iniziali e converge verso particolari configurazioni
nello spazio delle fasi, ossia verso i cosiddetti attrattor: della dinamica. In questo
caso perd il tipo di attrattori verso i quali pué convergere un sistema dinamico
continuo dipende fortemente dal suo numero n di gradi di libertd: infatti per
n = 1 sono possibili solo attrattori a punto fisso, per n = 2 si aggiungono attrat-
tori a ciclo limite, mentre solo per n > 3 diventa possibile osservare quelli che in
precedenza abbiamo chiamato attrattori strani, cioé attrattori caotici. La spiega-

Phase-Space

S

angular velocity p (cm/sec)

-5
-540 position theta (degree) 540

Figura 1.1: Ritratto nello spazio delle fasi dell’evoluzione temporale (traiettoria)
di un pendolo forzato e smorzato (vedi testo).



Per poter andare avanti nella trattazione del pendolo forzato occorre quin-
di rispondere immediatamente alla domanda: quante dimensioni possiede il suo
spazio delle fasi? Guardando la Fig.1.1 saremmo tentati di rispondere ’due’, ma
il lettore attento, osservando la traiettoria rappresentata, dedurrd subito che la
risposta corretta non pud essere questa: se cosi fosse infatti, a causa dei teore-
mi sopra esposti, la traiettoria non potrebbe autointersecarsi. Poiché invece si
osserva una autointersezione 1'unica possibilita é che la curva rappresentata in fi-
gura sia solamente la proiezione bidimensionale della traiettoria originale la quale
quindi, evidentemente, vive in uno spazio ad un numero maggiore di dimensioni.
Ma quante (e quali) sono queste dimensioni?

Phase-Space

angular velocity p (cm/sec)

-5
-540 position theta (degree) 540

Figura 1.1: Ritratto nello spazio delle fasi dell’evoluzione temporale (traiettoria)
di un pendolo forzato e smorzato (vedi testo).



6 + 30 + sinf = k - cos wpt (1.2)

Per scoprirlo torniamo all’equazione
1.2 e, seguendo I’approccio utilizzato nell’introduzione, cerchiamo di trasformarla
in un sistema di equazioni accoppiate del primo ordine. A questo scopo conviene
riscriverla nel modo seguente:

w=—Pw — sinf + k - cos wpt (1.3)

dove si € introdotta la velocitd angolare del pendolo w = 9, da distinguere dalla

frequenza di driving wp che sara invece data dalla derivata prima della fase di

driving ® (definita come ® = wpt). Considerando assieme le tre equazioni:
f=w

i . Flusso dissipativo 2D non autonomo
w=—PBw—sinf + k- cos ®



6 + 30 + sinf = k - cos wpt (1.2)

Per scoprirlo torniamo all’equazione

1.2 e, seguendo I’approccio utilizzato nell’introduzione, cerchiamo di trasformarla
in un sistema di equazioni accoppiate del primo ordine. A questo scopo conviene

riscriverla nel modo seguente:

w=—Pw — sinf + k - cos wpt (1.3)

dove si € introdotta la velocitd angolare del pendolo w = 9, da distinguere dalla
frequenza di driving wp che sara invece data dalla derivata prima della fase di
driving ® (definita come ® = wpt). Considerando assieme le tre equazioni:
0=w
- w=—Pw—sinfd+k-cos P Flusso dissipativo 3D autonomo

‘i’ = wp
"~ si ottiene proprio il sistema di equazioni cercato, che per 3 > 0 rappresenta
la dinamica del pendolo forzato dissipativo, il quale rivela quindi la sua natura di
sistema dinamico a tre gradi di libertéd (8, w, ®), dove tipicamente 8 € (—, ),
w € (—5,5) e @ € (0, 27).
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Systems with N Degrees of Freedom

If we compare Egs. (8.4-5) and (8.4-6) with the results of the simple harmonic
oscillator example, we see that an integrable system with N degrees of freedom is
equivalent, in terms of action-angle variables, to a set of N uncoupled oscillators.
(The oscillators are simple harmonic if the @; are independent of the value of the Js.
They are otherwise nonlinear oscillators for which @ depends on J.) This
connection explains why so much attention is paid to oscillating systems in the

study of dynamics.
N gradi di
liberta
Azione: jl. =0—->H=H(,)
B 0H(©6,J)
FY] . oH .
- =—z=o.(J i=1,...N 84-5
. 9H(®,J) ‘o al, i) (35
Jz—as)
a6,
Angolo:  8,(¢) = ;1 +6,(0) (8.4-6)




Systems with N Degrees of Freedom

If we compare Egs. (8.4-5) and (8.4-6) with the results of the simple harmonic
oscillator example, we see that an integrable system with N degrees of freedom is
equivalent, in terms of action-angle variables, to a set of N uncoupled oscillators.
(The oscillators are simple harmonic if the @; are independent of the value of the Js.
They are otherwise nonlinear oscillators for which @ depends on J.) This
connection explains why so much attention is paid to oscillating systems in the

study of dynamics.

lgradodi  Eor the simple harmonic oscillator, we know that the angular frequency of the

liberta  ogcillatory motion is given by @ = \/Ic/_m . Since this is a one-degree-of-freedom
system or since Hamilton’s equations are linear, we expect that this system is
integrable. The one constant of the motion is the Hamiltonian (energy) or some
multiple thereof. Hence, we can write the action J as

2 2
He 0 J =y =l P M (8.4-10)
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Systems with N Degrees of Freedom

If we compare Eqgs. (8.4-5) and (8.4-6) with the results of the simple harmonic
oscillator example, we see that an integrable system with N degrees of freedom is
equivalent, in terms of action-angle variables, to a set of N uncoupled oscillators.
(The oscillators are simple harmonic if the @, are independent of the value of the Js.
They are otherwise nonlinear oscillators for which @ depends on J.) This
connection explains why so much attention is paid to oscillating systems in the
study of dynamics.

2 gradi di Since there are N constants of the motion for an integrable system of N

liberta. degrees of freedom, the trajectories in state space are highly constrained. For
example, an integrable system with two degrees of freedom has trajectories
confined to a two-dimensional surface in phase space. This surface, in general, is
the surface of a torus residing in the original four-dimensional phase space. Like
the quasi-periodic motion studied in Chapter 6, the trajectories are characterized by
the two frequencies
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More generally, we say that a trajectory for an integrable system with N
degrees of freedom is constrained to the N-dimensional surface of a torus (which
resides in the original 2N-dimensional phase space). These tori are often called
invariant tori since the motion is confined to these surfaces for all time.

If the various frequencies @; are incommensurate and the motion is quasi-
periodic, then the trajectory eventually visits all parts of the torus surface. Such a
system is said to be ergodic because one could compute the average value of any
quantity for that system either by following the time behavior and averaging over
time (usually hard to do) or by averaging over the g, p values on the surface of the
torus in phase space (usually much easier to do).
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Action-Angle Space
Instead of the usual pg phase space, an alternative state space description makes use
of the action-angle variables. The motivation for this is threefold. First, for an
integrable system, each trajectory is characterized by a fixed value for each of the
action variables. For example, for the simple harmonic oscillator, each elliptical
trajectory in pq phase space corresponds to a fixed action as shown in Eq. (8.4-10).
In action-angle space, the trajectories of an integrable system reside on
horizontal lines of constant action. Each horizontal line in Fig. 8.4 corresponds to a
“torus” in the original pg phase space. (we may think of cutting the torus around its
outer circumference and then spreading the “surface” flat. The horizontal line
corresponds to viewing the surface edge on.)
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The second motivation for this kind of diagram comes from the study of

nonintegrable systems. As we shall see in the next section, when a Hamiltonian
system becomes nonintegrable, the action associated with a trajectory is no longer
constant (in general). This fact shows up most obviously in an action-angle space
diagram as the trajectory points wander vertically in that diagram.




8.5 Nonintegrable Systems, the KAM Theorem, and Period-Doubling

Since the behavior of an integrable Hamiltonian system is always periodic or quasi-
periodic, an integrable system cannot display chaotic behavior. We have spent
some time describing integrable systems because much of the literature on the
chaotic behavior of Hamiltonian systems has focused on systems that are, in some
sense, just slightly nonintegrable. We can then ask how the behavior of the system
deviates from that of an integrable system as the amount of nonintegrability
increases.

We are immediately faced with the problem of visualizing the trajectories for
nonintegrable systems because, as we learned in the last section, a nonintegrable
system must have at least two degrees of freedom. If the system were integrable,
then the trajectories would move on the two-dimensional surface of a torus and be
either periodic or quasi-periodic. However, if the system is nonintegrable, then the
trajectories can move on a three-dimensional surface in this four-dimensional phase
space because the energy is conserved and hence still constrains the trajectories.
This three-dimensional motion allows for the possibility of chaos.
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For an integrable two-degree-of-freedom system, we can think of the phase
space as consisting of a set of nested tori (see Fig. 8.5). For fixed values of the two
constants of the motion, the trajectories are confined to the surface of one of the
tori. When the system becomes slightly nonintegrable, the trajectories begin to
move off the tori, and we say that the tori are destroyed.

Poincaré sections are used to simplify the description further. We pick out a
phase space plane that is intersected “transversely” by the trajectories and then
record the points at which trajectories intersect that plane. For a two-degree-of-
freedom system, we thereby reduce the description to a set of points in a two-
dimensional plane.

P

Sistema Integrabile

H=w0J +w0,J,

Sistema "leggermente"
non Integrabile

q

q>

Fig. 8.5. For an integrable two-degree-of-freedom system, the trajectories are confined to the
surfaces of a set of nested tori. Each surface corresponds to a different set of values of the
two constants of the motion. If the system becomes nonintegrable, the trajectories can move
off the tori.



For a general integrable two-degree-of-freedom system, the Poincaré plane
will look like a (distorted) version of the phase space diagram for the pendulum:
There will be elliptic orbits, which form closed paths around elliptic points. (As in
Chapter 6, the paths will consist of a finite number of discrete points for periodic
motion. For quasi-periodic motion, the intersection points fill in a continuous curve
on the Poincaré plane.) In the neighborhood of hyperbolic points, there will also be
hyperbolic orbits, some of which form apparent intersections at the hyperbolic
(saddle) points. Figure 8.6 illustrates the Poincaré plane for the Hénon—Heiles
system, discussed in more detail in Section 8.6.
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If the system becomes nonintegrable, constraints are removed from the [¢ Y
trajectories, and they can begin to move more freely through phase space. Hence, |(§
loosely speaking, we expect the highly organized pattern of the integrable system’s |
Poincaré section to “dissolve.” Does the entire Poincaré section, however, dissolve
simultaneously leaving only a random scattering of points? The answer to this
question is provided by the famous Kolmogorov-Arnold-Moser (KAM) Theorem
[Arnold, 1978].

The KAM theorem states that (under various technical conditions that need
not concern us here) some phase space tori, in particular those associated with
quasi-periodic motion with an irrational winding number, survive (but may be winding number:
slightly deformed) if a previously integrable system is made slightly nonintegrable. o,

This result is stated more formally as follows: The originally integrable system’s ,
Hamiltonian can be written as a function of the action variables alone: Hy(J). We
now make the system nonintegrable by adding to Hy(J) a second term, which

renders the overall system nonintegrable. The full Hamiltonian is then sezione
aurea

H(J,0)=H, (J)+€H,(J,0) (8.5-1) ‘ a ) b )
where € is a parameter that controls the relative size of the nonintegrability term. ~ a\-i-fb -
The second term in (8.5-1) is sometimes called a “perturbation” of the original e
Hamiltonian, and “perturbation theory” is used to evaluate the effects of this term =—=y
on the trajectories. The KAM Theorem states that for € << 1 (so the system is b
almost integrable), the tori with irrational ratios of the frequencies associated with 1+ V5 B
the actions will survive. These are called KAM tori. As ¢ increases, the tori ¥~ ~ o

dissolve one by one with the last survivor being the one with winding number equal 1.6180339887. ..
to our old friend the Golden Mean, the “most irrational” of the irrational numbers.  golden ratio
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As soon as € increases above 0, the phase space tori associated with rational
winding numbers break up. In a Poincaré section representation, the points begin to
scatter around the Poincaré plane. This fast break-up can be explained as the kind
of resonance effect discussed in Chapter 6. The nonintegrable part of the
Hamiltonian essentially couples together what had been independent oscillations in
the integrable case. When the frequency ratio for a torus is rational, there is
considerable overlap of the harmonics associated with each oscillation. This
overlap creates a “strong resonance” condition leading (usually) to a rapid growth
of the amplitude of the motion in phase space and a rapid flight from the torus
surface to which the trajectories had been confined in the integrable case. When
the frequency ratio is irrational, however, there is no overlap in harmonics and we
might expect the corresponding torus to survive for larger values of €.

H(J,0)=H, (J)+€H,(J,0)

. o . irrational KAM tori
2dim Poincare section

™N

rational tori




What is the dynamical importance of the KAM tori? In the integrable case,
we argued that phase space trajectories are confined to the surfaces of tori in phase
space. As the system becomes nonintegrable, trajectories are able to move off these
tori. However, the surviving KAM tori still have trajectories associated with their
surfaces. In low-dimensional phase spaces, the surviving KAM tori can prevent a
trajectory that has moved off a dissolving torus from ranging throughout the
allowed energy region of phase space. In a sense, the KAM tori continue to
provide some organization for the trajectories in phase space.

H(J,0)=H, (J)+€H,(J,0) most irrational
KAM tori

o'w
Py
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-0.40




Let us see how this organizational ability depends on the dimensionality of
the phase space (that is, on the number of degrees of freedom for the system). In a
2N-dimensional phase space, the constant energy “surface” has 2N — 1 dimensions.
As we argued earlier, the tori for an integrable system have a dimensionality of N.
Thus, for the tori to partition phase space, we can have either N=1or N=2. In
other words, the tori can segregate regions of phase space only in systems with one
or two degrees of freedom. In higher-dimensionality systems, when the tori begin
to dissolve as the system becomes nonintegrable, a so-called stochastic web forms.
In that case, trajectories may wander over large portions of the allowed energy
region of state space. [Zaslevsky, Sagdeev, Usikov, and Chernikov, 1991] gives a
very complete description of the formation of this stochastic web.
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We can now appreciate one important difference between chaotic behavior in
dissipative systems and chaos in Hamiltonian systems. In dissipative systems,
initial conditions are not important because eventually the trajectories end up on an
attractor. (Let us remind ourselves, however, that in general there may be several
attractors for a given set of parameter values and different initial conditions may
= lead to trajectories ending up on different attractors.) However, in Hamiltonian
systems, initial conditions are quite crucial. Some sets of initial conditions lead to
regular behavior, while others lead to chaotic behavior. All of them have the same
set of parameter values. As the amount of nonintegrability grows, however, the
chaotic regions, in general, begin to crowd out the regular regions (or the regular
regions, associated with the irrational winding number tori, shrink to allow the
chaotic regions to grow).
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The Hénon-Heiles Hamiltonian

In this section we will explore the properties of a particular model Hamiltonian to
illustrate the dynamics of Hamiltonian systems. The model was first introduced by
Hénon and Heiles (HEH64) as a model for the motion of a star inside a galaxy.
The Hamiltonian has two degrees of freedom (two pairs of ps and gs) and takes the

form
H=1p!+iq +}pi +1q) +[ala-1a1] (8.6-1)

H,(J) eH,(J,0)
This Hamiltonian represents two simple harmonic oscillators (compare Exercise
8.2-2) coupled by a cubic term, which makes the Hamiltonian nonintegrable. If we
let ¢, = x, g, = y, p\ = p,, and p; = p,, then the Hamiltonian can also be interpreted
as a model for a single particle moving in two dimensions under the action of a
force described by a potential energy function

Vi,y)=4ix'+1y' + X y-1y (8.6-2)
This potential cncrgy function has a Iocal mnmmum at the origin (x =0, y=0).

2.5
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A three-dimensional plot of this potential energy function is shown on the left in Fig.
8.8. A contour plot of the same potential energy function is shown on the right of
Fig. 8.8. E<0.16666...

If we start the particle near the origin with an|energy value less than 1/6, it
will stay in an “orbit” near the origin for all time. If the energy is greater than 1/6,
the particle can escape the local minimum of the potential energy and go off to
infinity. If the energy is very small, the particle stays close to the origin and the

trajectories look much like the periodic motion of a particle in a two-dimensional
simple harmonic potential.

Fig. 8.8. On the left is a three-dimensional plot of the potential energy function for the
Hénon-Heiles model. On the night is a contour plot of the same function. We will be
concemed with a particle moving in the slight depression near the origin. If the particle’s
energy is less than 1/6, the particle will be trapped in the triangular region near the origin.
For higher energies the particle can escape the local minimum of the potential energy.



Hamilton's equations for this system lead to the following equations for the

dynamics of the system:
L LOH
op, '
y‘aH =p
H=lpf+lp§+—x2+1y2+x2y—ly3 47 % (8.6-3)
) 2 3 ol
b === —x-2xy
ox
by=-H ey R4y
B

We see that the system lives in a four-dimensional phase space. However, since
the system is Hamiltonian, the energy conservation constraint means that the
trajectories must live in a three-dimensional volume in this four-dimensional space.
Again, we will use the Poincaré section technique to reduce the recorded trajectory
points to a two-dimensional plane.

Exercise 8.6-1. Verify that Hamilton's equations lead to the results
shown in Eq. (8.6-3). Verify explicitly that Egs. (8.6-3) lead to no volume
contraction in phase space.




Let us examine in some detail how a Poincaré section of the phase space
motion of the particle can be understood. It is traditional to plot the trajectory
location on the yp, plane when x = 0. We shall follow that tradition. In generating
the Poincaré section, we first pick an energy value E and then some initial point on
the Poincaré plane consistent with that energy value. For x =0, the y and p, values

must satis
fy E=ipl+ipl+3y' -4y’ (8.6-4)

Hence, for a fixed energy and a particular initial value for p,, there is a finite range
on the y p, plane within which the Poincaré section points must fall. The time
evolution equations (8.6-3) are then integrated and successive Poincaré section
points are generated.
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Figure 8.9 shows one such orbit in the xy (real space) plane
on the left. On the right is the corresponding Poincaré section. The Poincaré
section points fall on two “ellipses” that are formed by the intersection of a surface
of a three-dimensional torus with the Poincaré plane. (Note that the cross section of
the torus is distorted and the part of the torus intersecting the plane for negative
values of y has a shape different from the part intersecting at positive values of y.)
Thus, we conclude that this particular orbit corresponds to a periodic or quasi-
periodic orbit. Near the middle of each of the ellipses is an elliptic point, not shown
in Fig. 8.9.
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Fig. 8.9. On the left is the xy (real space) trajectory of a particle moving in the Hénon—-Heiles
potential with E = 0.06. The orbit started with x = 0, y = -0.1475, p, = 0.3101, and p, = 0.
On the right is the corresponding py—~y Poincaré section with x = 0. The “ellipses” are formed
by the intersection of the surface of a three-dimensional torus with the Poincaré plane.



Note that the trajectory shown in Fig. 8.9 is just one of many trajectories
possible for the given energy value. To fill out the Poincaré section, we need to

choose a variety of initial conditions consistent with the same energy value. Figure

8.10 shows another orbit (in the xy plane) and its corresponding Poincaré section

for the same energy value used in Fig. 8.9. This orbit approaches and is then

repelled by three hyperbolic points located near the regions of apparent intersection.

Near those hyperbolic points, the trajectory points are smeared and indicate

(tentatively) that the behavior is chaotic. However, the chaotic behavior is confined

to very small regions of the Poincaré plane. Thus, we see that chaotic orbits and

quasi-periodic orbits coexist for the same energy value for Hamiltonian systems.

Some initial conditions lead to chaotic orbits, while some lead to quasi-periodic o
. Punti Iperbolici

orbits. 4 0.5 "

E=0.06 /
y Py
025 — 0.25 —
0.00 }— 000 —
3
025 — 025 —
4.9 | | | 0.50 | | |
.50 £0.25 0.00 0.25 X 0.50 0.50 0.25 0.00 0.25 y 0.50

Fig. 8.10. On the left is another orbit of the Hénon—Heiles potential for E = 0.06, but with
initial conditions different from those in Fig. 8.9. On the right is the corresponding y p,
Poincaré section.
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Figure 8.11 shows a more complete Poincaré section with several initial
conditions used to generate a variety of trajectories, all with E = 0.06. Note that
there is an outer boundary for the allowed intersection points in the yp, plane (with
x = 0). Points outside this boundary correspond to trajectories associated with
energy values different from E = 0.06. The right-hand side of Fig. 8.11 shows a
magnified view of the region near the lower hyperbolic point. The chaotic behavior
of the intersection points is more obvious. The chaotic regions associated with
these hyperbolic points are sometimes called stochastic layers or stochastic webs.
These layers are due to homoclinic and heteroclinic tangles that develop from the
stable and unstable manifolds associated with the hyperbolic (saddle) points.
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Fig. 8.11. On the left is an x = 0, yp, Poincaré section for the Hénon—Heiles system with E =
0.06. On the right is a magnified view of one of the regions near a hyperbolic point. The
(slight) smear of intersection points is a symptom of a chaotic orbit.



The orbits that come close to the hyperbolic points are close to the
separatrices associated with those points. For most Hamiltonian systems, those
separatrices segregate regions of qualitatively different behavior. In the Hénon-
Heiles system, trajectories associated with Poincaré section “curves” that lie outside
the separatrices correspond to motion that lies close to the y axis for the real space
trajectories. Figure 8.12 shows the trajectory associated with the Poincaré section
curve that bounds the allowed region. The vase-shaped real space trajectory is
qualitatively different from the trajectories associated with the inner ellipses in the
Poincaré section (shown in Figs. 89 and 8.10). Since the orbits close to the
separatrices are on the border between the two types of behavior, they are quite
sensitive to perturbations, and they are the first to show signs of chaotic behavior
when the system becomes nonintegrable.
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Fig. 8.12. On the left is the xy (real space) trajectory of the Hénon—Heiles model with E =
0.06 and an initial point chosen to generate the Poincaré section shown on the right with
intersection points that lie on the outer boundary of the allowed energy region. Since this
Poincaré section curve is outside the separatrices associated with the hyperbolic points (see
Fig. 8.10), the xy trajectory is qualitatively different from the trajectory (shown in Fig. 8.9)
for Poincaré curves inside the separatrices.



Let us now increase the energy of the particle and see how the Poincaré
section changes. For larger values of the energy, we expect the particle to roam
over a wider range of xy values and hence the cubic potential term that causes the
nonintegrability should become more important.

In Fig. 8.13, we have plotted the yp, Poincaré section (again with x = 0) for E
= (.10. The Poincaré section has the same general structure seen in Fig. 8.11:
There are two clusters of ellipses around the two elliptic points and an intertwining
trajectory that gets near the three hyperbolic points; however, here the orbit
associated with the hyperbolic points is more obviously chaotic. In fact, the entire
chaotic set of points was generated from a single trajectory launched near one of the

hyperbolic points.
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Fig, 8.13. On the left is the Poincaré section for the Hénon—Heiles model with £=0.10. On
the right is a magnified view of one of the archipelago island chains of elliptic and hyperbolic
points that form from a KAM torus. Surrounding this chain are other surviving KAM tori.



A new feature, however, appears as well. On the left in Fig. 8.13, an elliptical
band around each of the elliptic points seems to be smeared. On the right of Fig.
8.13, a magnified view of one of these bands shows that the band is actually a
cluster (an “archipelago™) of five elliptical curves interlaced with an orbit that gets
near to five hyperbolic points. You should note that the five elliptical curves were
generated by a single trajectory; therefore, these curves should be thought of as
cross sections of a “snake” tube that wraps around the main “inner” elliptical tube
five times. Similarly, the “necklace” associated with the hyperbolic points is the
trace of a single trajectory.
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Fig, 8.13. On the left is the Poincaré section for the Hénon—Heiles model with £=0.10. On
the right is a magnified view of one of the archipelago island chains of elliptic and hyperbolic
points that form from a KAM torus. Surrounding this chain are other surviving KAM tori.



As the energy of the system has increased, the
nonintegrable part of the Hamiltonian becomes more important, and the KAM tori
corresponding to irrational winding numbers begin to dissolve. Each one dissolves
by breaking up into a series of elliptical islands interlaced with a (chaotic) trajectory
associated with the hyperbolic points that are “born” when the islands form.

The chaotic trajectory associated with one archipelago, however, is not
connected to the chaotic trajectories associated with other clusters of hyperbolic
points. In a sense, the remaining KAM tori act as barriers and keep the chaotic
trajectories, which would like to roam throughout phase space, confined to certain
regions. (Again, we should remind ourselves that this is a feature unique to systems
with two degrees of freedom.)
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Fig, 8.13. On the left is the Poincaré section for the Hénon—Heiles model with £=0.10. On
the right is a magnified view of one of the archipelago island chains of elliptic and hyperbolic
points that form from a KAM torus. Surrounding this chain are other surviving KAM tori.



However, if the energy is increased further, the KAM tori continue to dissolve
and a single chaotic trajectory eventually wanders throughout almost the entire

allowed region of the Poincaré section (consistent with the conservation of energy).
Figure 8.14 shows Poincaré sections with E = 0.14 (on the left) and E = 0.16 (on
the right). The scattered dots were all produced from one trajectory that now
wanders considerably through the phase space. Some vestiges of KAM tori can
still be seen, but they occupy a considerably smaller region of phase space.
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Fig. 8.14. On the left is the Poincaré section (for x = 0) )p, plane for the Hénon—Heiles
model with E=0.14. On the right we have £=0.16. In both cases the scattered points were
all produced by launching a single trajectory that wanders chaotically through the allowed
region of phase space.



Let us summarize what we have seen with the Hénon-Heiles model. For low
values of the energy, most of the trajectories are associated with quasi-periodic
trajectories (KAM tori). Chaotic behavior is present, but it is barely noticeable
because it is confined to very small regions of phase space. As the energy
increases, the KAM tori begin to dissolve via archipelago formation. The chaotic
regions begin to expand. However, for a two-degree-of-freedom system, the
remaining KAM tori prevent a given chaotic trajectory from wandering over the
entire allowed region of phase space. After the last KAM torus (associated with the
Golden Mean winding number) has disappeared, a single chaotic trajectory covers
almost the entire allowed region of phase space as shown in Fig. 8.15.
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Limite Periodiche Limite Periodiche



MAPPA STANDARD

Spazio-delle-fasi

SETUP
GO
=
SETUP-NEW-IC

L —

K 0.93
iteration

27877

Py =P — Ksinx;

Xip1 = Xt Py

where p and x are taken as modulo 27.

6 O
Kicked Rotator



MAPPA STANDARD

SETUP

SETUP-NEW-IC

iteration
27877

P,y = P; — Ksinx;

1
Xip1 =%+ Py

where p and x are taken as modulo 27.

Kicked Rotator



