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Metodo dello Jacobiano per studiare i punti fissi nel caso generale a 2 dim.
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3.14 The Jacobian Matrix for Characteristic Values

We would now like to introduce a more elegant and general method of finding the
characteristic equation for a fixed point. This method makes use of the so-called
Jacobian matrix of the derivatives of the time evolution functions. Once we see
how this procedure works, it will be easy to generalize the method, at least in
principle, to find characteristic values for fixed points in state spaces of any
dimension. The Jacobian matrix for the system is defined to be the following
square array of the derivatives:

Autovalori

Matrice Jacobiana J=(f“ f") ) (2,4 (3.14-1)

o fa

where the derivatives are evaluated at the fixed point. We subtract A from each of
the principal diagonal (upper left to lower right) elements and set the determinant of
the matrix equal to O:




3.18 Summary

In this chapter we have developed much of the mathematical machinery needed to
discuss the behavior of dynamical systems. We have seen that fixed points and
their characteristic values (determined by derivatives of the functions describing the
dynamics of the system) are crucial for understanding the dynamics. We have also
seen that the dimensionality of the state space plays a major role in determining the
kinds of trajectories that can occur for bounded systems.
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6.4 Rabbits versus Sheep

In the next few sections we'll consider some simple examples of phase plane
analysis. We begin with the classic Lotka—Volterra model of competition between
two species, here imagined to be rabbits and sheep. Suppose that both species are
competing for the same food supply (grass) and the amount available is limited.
Furthermore, ignore all other complications, like predators, seasonal effects, and
other sources of food. Then there are two main effects we should consider:




Ex.1 ROMEO E GIULIETTA

Il libro di Strogatz suggerisce di studiare, come esercizio, un sistema dinamico lineare a due
dimensioni che descrive, al variare dei parametri, la variazione temporale dell’amore o
dell’odio tra due partner coinvolti in una relazione romantica.

Definiamo x(t) come I'amore (o l'odio nel caso in cui sia negativo) di Romeo nei '_
confronti di Giulietta al tempo “t” e y(t) 'amore (o I'odio) di Giulietta nei §
confronti di Romeo. Cosi abbiamo le seguenti due equazioni differenziali del P

primo ordine: Romeo X =ax+ by

Giulietta y=cx+dy

“un
d

| parametri e “b” stabiliscono il comportamento di Romeo mentre “c” e “d” quello di
Giulietta; piu precisamente “a” descrive |'attrazione (o repulsione) di Romeo causata dai suoi
stessi sentimenti, mentre “b” I'attrazione (o repulsione) causata dai sentimenti di Giulietta.
Romeo (ma lo stesso vale per Giulietta) pud mostrare 4 comportamenti diversi in base al
segno dei parametri “a” e “b”:

Appassionato: a>0; b>0 (Romeo e spinto dai suoi stessi sentimenti cosi come
da quelli di Giulietta)

Narcisistico: a>0; b<O (Romeo e spinto ancora dai suoi sentimenti ma indietreggia a causa dei
sentimenti di Giulietta)

Amanti prudenti: a<0; b>0 (Romeo si tira indietro sui suoi stessi sentimenti ma e incoraggiato
da Giulietta)

Eremita: a<0; b<0 (Romeo si tira indietro sui suoi stessi sentimenti cosi come da Giulietta)
Esercizio:

Esplorare il modello sia analiticamente che con l'aiuto di NetLogo in corrispondenza di diversi
valori dei parametri



Ex.2 LA GLICOLISI

In the fundamental biochemical process called glycolysis, living cells obtain en-
ergy by breaking down sugar. In intact yeast cells as well as in yeast or muscle ex-
tracts, glycolysis can proceed in an oscillatory fashion, with the concentrations of
various intermediates waxing and waning with a period of several minutes. For re-
views, see Chance et al. (1973) or Goldbeter (1980).

A simple model of these oscillations has been proposed by Sel’kov (1968) In
dimensionless form, the equations are

. 2 H H AUP H 2 H
Xx=—-x+ay+x . ; NN
. YTEY " Valori tipici: a=0.08, b=0.6 {F > Qm

y=b—ay—x2y H o OH H O

Glucosio Glucosio-6-fosfato

where x and y are the concentrations of ADP (adenosine diphosphate) and F6P
(fructose-6-phosphate), and a,b >0 are kinetic parameters.
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Biforcazioni



3.17 Bifurcation Theory (vale per Flussi e Mappe)

We have seen that the characteristic values associated with a fixed point depend on
the various parameters used to describe the system. As the parameters change, for
example as we adjust a voltage in a circuit or the concentration of chemicals in a
reactor, the nature of the characteristic values and hence the character of the fixed
point may change. For example, an attracting node may become a repellor or a
saddle point. The study of how the character of fixed points (and other types of
state space attractors) change as parameters of the system change is called

bifurcation theory. (Recall that the term bifurcation is used to describe any sudden
change in the dynamics of the system. When a fixed point changes character as
parameter values change, the behavior of trajectories in the neighborhood of that
fixed point will change. Hence the term bifurcation is appropriate here.) Being able
to classify and understand the various possible bifurcations is an important part of
the study of nonlinear dynamics. However, the theory, as it is presently developed,
is rather limited in its ability to predict the kinds of bifurcations that will occur and
the parameter values at which the bifurcations take place for a particular system.
Description, however, is the first step toward comprehension and understanding.
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We should also emphasize that simple bifurcation theory treats only
the changes in stability of a particular attractor (or, as we shall see in Chapter 4, a
particular basin of attraction). Since in general a system may have, for fixed
parameter values, several attractors in different parts of state space, we often need
to consider the overall dynamical system (that is, its “global” properties) to see
what happens to trajectories when a bifurcation occurs.

To keep track of what is happening as the control parameter is varied, we will
use two types of diagrams. One type, which we have seen before, is the bifurcation

1 diagram, in which we plot the location of the fixed point (or points) as a function of
the control parameter. In the second type of diagram, we plot the characteristic
2 values of the fixed point as a function of the control parameter.

To see how this kind of analysis proceeds, let us begin with the one-
dimensional state space case. In a one-dimensional state space, a fixed point has
just one characteristic value A. The crucial assumption in the analysis is that A
varies smoothly (continuously) as some parameter, call it u, varies. For example, if
A(u) < O for some value of u, then the fixed point is a node. As u changes, A might
increase (become less negative), going through zero, and then become positive.
The node then changes to a repellor when A > 0.
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Biforcazioni in 1D

parameter

Let us consider a specific example: /

Flusso a una dimensione x= U - x* (3.17-3)

For ; positive, there are two fixed points: one at x = +J;_4 , the other at x = -J; ;

For| u negative |there are no fixed points (assuming, of course, that x is a real ; _ (X )i
number). If we use Eq. (3.6-3), which defines the characteristic value for a fixed dX |x.x,
point, to find the characteristic value of the two fixed points (for u > 0), we see that 4 (x)

the fixed point at x =—/u is a repellor, while the fixed point at x=+u isa ax
node. A1) <0
M=) >0

©w<0 u>0
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Biforcazioni in 1D

parameter

Let us consider a specific example: /

Flusso a una dimensione x= U - x* (3.17-3)

For ; positive, there are two fixed points: one at x = +J;_4 , the other at x = -J; ;

For| u negative there are no fixed points (assuming, of course, that x is a real ; _ éfﬂ‘

number). If we use Eq. (3.6-3), which defines the characteristic value for a fixed dX |x.x

point, to find the characteristic value of the two fixed points (for u > 0), we see that d4r(x) 5

the fixed point at x = - is a repellor, while the fixed point at x =+Ju isa dx

node. A1) <0
If we start with i < 0 and let it increase, we find that a bifurcation takes place

at 4= 0. At that value of the parameter we have a saddle point, which then changes M) >0

into a repellor-node pair as 4 becomes positive. We say that we have a repellor-
node bifurcation at yi = 0.

©w<0 u=0 u>0
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Biforcazioni in 1D

parameter
Let us consider a specific example: /
Flusso a una dimensione x= U - x* (3.17-3)

For ﬁ positive, there are two fixed points: one at x = +J;_4 , the other at x = -J; ;

For| u negative |there are no fixed points (assuming, of course, that x is a real , _ gﬂ‘

number). If we use Eq. (3.6-3), which defines the characteristic value for a fixed dX |x.x

point, to find the characteristic value of the two fixed points (for u > 0), we see that d4r(x) >

the fixed point at x = - is a repellor, while the fixed point at x =+Ju isa dx

node. A1) <0
If we start with i < 0 and let it increase, we find that a bifurcation takes place

at 4= 0. At that value of the parameter we have a saddle point, which then changes M) >0

into a repellor-node pair as u becomes positive. We say that we have a repellor-

node bifurcation at yi = 0.

Fig. 3.14. The bifurcation diagram for the repellor-node (saddle-node) bifurcation. The solid
line indicates the x value for the node as a function of the parameter value. The dashed line is
for the repellor. Note that there is no fixed point at all for < 0. =0

l u<0 W70 '\
/f\ bifurcation point /(7

Nota: Note that at the repellor-node bifurcation point, the fixed point of the
system is structurally unstable in the sense discussed in Section 3.6. Structurally e
unstable points are important because their existence indicates a possible . _
bifurcation. T




In the nonlinear dynamics literature, the bifurcation just described is usually
called a saddle-node bifurcation, tangent bifurcation, or a fold bifurcation. The
origin of these names will become apparem when we see analogous bifurcations in
higher-dimensional state spaces. For example, if we imagine the curves in Fig.
3.14 as being the cross section of a piece of paper extending into and out of the
plane of the page, then the bifurcation point represents a “fold” in the piece of
paper. Also, Fig. 3.5 shows how the function in question becomes tangent to the x
axis at the bifurcation point.

AX) No Fixed Point

@ U
X % fX) | Saddle Point

> u % £X) Repellor
X (c) \f\_} x/

Node

Fig. 3.5. In one-dimensional state spaces, a saddle point, the point X, in (b), is structurally
unstable. A small change in the function f{X), for example pushing it up or down along the
vertical axis, either removes the fixed point (a), or changes it into a node and a repellor (¢).



Biforcazioni in 2D

Limit Cycle Bifurcations
As we saw earlier, a fixed point in a two-dimensional state space may also have
complex-valued characteristic values for which the trajectories have spiral-type
behavior. A bifurcation occurs when the characteristic values move from the left-
hand side of the complex plane to the right-hand side; that is, the bifurcation occurs
when the real part of the characteristic value goes to 0.

We can also have limit cycle behavior in two-dimensional systems. The birth
and death of a limit cycle are bifurcation events. The birth of a stable limit cycle is

s called a Hopf bifurcation (named after the mathematician E. Hopf). (Although this

type of bifurcation was known and understood by Poincaré and later studied by the
Russian mathematician A. D. Andronov in the 1930s, Hopf was the first to extend
these ideas to higher-dimensional state spaces.) Since we can use a Poincaré
section to study a limit cycle and since for a two-dimensional state space, the
Poincaré section is just a line segment, the bifurcations of limit cycles can be
studied by the same methods used for studying bifurcations of one-dimensional
dynamical systems.

A Hopf bifurcation can be modeled using the following normal form
equations:
Flusso a due 5 =X talu -(x'z ) (3:17-53)
dimensioni ~
X, =+x 4+ x,{u-(x +x3)) (3.17-5b)
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X o= =x +x{u=(x +x3)) (3.17-5a) Esiste chiaramente
un punto fisso

X, =4x +x,(u—-(x' +x3)) (3.17-5b) nell’origine...

The geometric form of the trajectories is clearer if we change from (x), xp)

coordinates to polar coordinates (r,6) defined in the following equations and

illustrated in Fig. 3.18.
Distanza dal punto
. / 22
r=N®*+3) fisso nell’origine

(3.17-6)
tan@ = 2
X,
Using these polar coordinates, we write Egs. (3.17-5) as
F=r{p-r?) = f(r) cubica (3.17-7a)
6=1 —> 0(1)=0, +t (3.17-7b)
* Fig. 3.18. The definition of polar coordinates. r is
X2 y the length of the radius vector from the origin. 0 is
the angle between the radius vector and the positive
X axis.
0
X




Now let us interpret the geometric nature of the trajectories that follow from
Egs. (3.17-7). The solution to Eq. (3.17-7b) is simply

0(1)=6, +1 . (3.17-8)

that is, the angle continues to increase with time as the trajectory spirals around the
origin. For|u < 0, there is just one fixed point for r, namely r = 0. By evaluating
the derivative of f{r) with respect to r at r = 0, we see that the characteristic value is
equal to y. Thus, for u < 0, that derivative is negative, and the fixed point is stable.
In fact, it is a spiral node.

Fig. 3.19. X, F=r{p-r*)= f(r)

fir) & H spiral node 6=1

K<0) l




Now let us interpret the geometric nature of the trajectories that follow from
Egs. (3.17-7). The solution to Eq. (3.17-7b) is simply

0(1)=6, +1 . (3.17-8)

that is, the angle continues to increase with time as the trajectory spirals around the
origin. For|u < 0, there is just one fixed point for r, namely r = 0. By evaluating
the derivative of f{r) with respect to r at r = 0, we see that the characteristic value is
equal to y. Thus, for u < 0, that derivative is negative, and the fixed point is stable.
In fact, it is a spiral node.

For|u > 0/ the fixed point at the origin is a spiral repellor; it is unstable;
trajectories starting near the origin spiral away from it. There is, however, another
fixed point for r, namely, r = \/;_1- . This fixed point for r corresponds to a limit
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Now let us interpret the geometric nature of the trajectories that follow from
Eqgs. (3.17-7). The solution to Eq. (3.17-7b) is simply

(1) =6, +1 . (3.17-8)

that is, the angle continues to increase with time as the trajectory spirals around the
origin. For|u < 0, there is just one fixed point for r, namely r = 0. By evaluating
the derivative of f{r) with respect to r at r = 0, we see that the characteristic value is
equal to y. Thus, for u < 0, that derivative is negative, and the fixed point is stable.
In fact, it is a spiral node.

For|u > 0/ the fixed point at the origin is a spiral repellor; it is unstable;
trajectories starting near the origin spiral away from it. There is, however, another
fixed point for r, namely, r = J;I This fixed point for r corresponds to a limit
cycle with a period of 27 [in the time units of Egs. (3.17-7)]. We say that the limit
cycle is born at the bifurcation value u = 0. Fig. 3.19 shows the bifurcation

diagram for the Hopf bifurcation.
F%’ 30190 Xz limit cycle '-. i r{” 3 ’,2} = f(’_)
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Biforcazioni e Strutture Dissipative

Sequenza di biforcazioni nei sistemi lontani dall’equilibrio
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4

Three-Dimensional State Space and Chaos

4.1 Overview

In the previous chapter, we introduced some of the standard methods for analyzing
dynamical systems described by systems of ordinary differential equations, but we
limited the discussion to state spaces with one or two dimensions. We are now
ready to take the important step to three dimensions. This is a crucial step, not
because we live in a three-dimensional world (remember that we are talking about
state space, not physical space), but because in three dimensions dynamical systems
can behave in ways that are not possible in one or two dimensions. Foremost
among these new possibilities is|chaos.

First we will give a hand-waving argument (we could call it heuristic if we
wanted to sound more sophisticated) that shows why chaotic behavior may occur in
three dimensions. We will then discuss, in parallel with the treatment of the
previous chapter, a classification of the types of fixed points that occur in three

dimensions. However, we gradually wean ourselves from the standard analytic

techniques and begin to rely more and more on graphic and geometrical
(topological) arguments. This change reflects the flavor of current developments in
dynamical systems theory. In fact, the main goal of this chapter is to develop
geometrical pictures of trajectories, attractors, and bifurcations in three-dimensional
state spaces.



4.2 Heuristics

We will describe, in a rather loose way, why three (or more) state space dimensions
are needed to have chaotic behavior. First, we should remind ourselves that we are
dealing with dissipative systems whose trajectories eventually approach an
attractor. For the moment we are concerned only with the trajectories that have
settled into the attracting region of state space. When we write about the divergence
of nearby trajectories, we are concerned with the behavior of trajectories within the
attracting region of state space.

In a somewhat different context we will need to consider sensitive
dependence on initial conditions. Initial conditions that are not, in general, part of
an attractor can lead to very different long-term behaviors on different attractors.
Those behaviors, determined by the nature of the attractor (or attractors), might be
time-independent or periodic or chaotic.

As we saw in Chapter 1, chaotic behavior is characterized by the divergence
of nearby trajectories in state space. As a function of time, the “separation”
(suitably defined) between two nearby trajectories increases exponentially, at least
for short times. The last restriction is necessary because we are concerned with

systems whose trajectories stay within some bounded region of state space. The
system does not “blow up.” There are three requirements for chaotic behavior in
such a situation:

1. no intersection of different trajectories;
2. bounded trajectories;
3. exponential divergence of nearby trajectories.



These conditions cannot be satisfied simultaneously in one- or two-
dimensional state spaces. You should convince yourself that this is true by
sketching some trajectories in a two-dimensional state space on a sheet of paper.
However, in three dimensions, initially nearby trajectories can continue to diverge
by wrapping over and under each other. Obviously sketching three-dimensional
trajectories is more difficult. You might try using some relatively stiff wire to form
some trajectories in three dimensions to show that all three requirements for chaotic
behavior can be met. You should quickly discover that these requirements lead to
trajectories that initially diverge, then curve back through the state space, forming
in the process an intricate layered structure. Figure 4.1 is a sketch of diverging
trajectories in a three-dimensional state space.

Fig. 4.1, A sketch of trajectories in a three-dimensional state space. Notice how two nearby
trajectories can continue to behave quite differently from each other yet remain bounded by
weaving in and out and over and under each other.



The notion of exponential divergence of nearby trajectories is made formal by
introducing the Lyapunov exponent. If two nearby trajectories on a chaotic
attractor start off with a separation d, at time ¢ = 0, then the trajectories diverge so
that their separation at time #, denoted by d(r), satisfies the expression

d(t) = d,e” (4.2-1)

The parameter A in Eq. (4.2-1) is called the Lyapunov exponent for the
trajectories. If A is positive, then we say the behavior is chaotic. (Section 4.13
takes up the question of Lyapunov exponents in more detail.) From this definition
of chaotic behavior, we see that chaos is a property of a collection of trajectories.

Fig. 4.1, A sketch of trajectories in a three-dimensional state space. Notice how two nearby
trajectories can continue to behave quite differently from each other yet remain bounded by
weaving in and out and over and under each other.



Chaos, however, also appears in the behavior of a single trajectory. As the
trajectory wanders through the (chaotic) attractor in state space, it will eventually
return near some point it previously visited. (Of course, it cannot return exactly to
that point. If it did, then the trajectory would be periodic.) If the trajectories exhibit
exponential divergence, then the trajectory on its second visit to a particular
neighborhood will have subsequent behavior, quite different from its behavior on

the first visit. Thus, the impression of the time record of this behavior will be one of

nonreproducibility, nonperiodicity, in short, of chaos.




The crucial feature of state space with three or more dimensions that permits
chaotic behavior is the ability of trajectories to remain within some bounded region
by intertwining and wrapping around each other (without intersecting!) and without
repeating themselves exactly. Clearly the geometry associated with such
trajectories is going to be strange. In fact, such attractors are now called strange
attractors. In Chapter 9, we will give a more precise definition of a strange
attractor in terms of the notion of fractal dimension. If the behavior on the attractor
is chaotic, that is, if the trajectories on the attractor display exponential divergence
of nearby trajectories (on the average), then we say the attractor is chaotic. Many
authors use the terms strange attractor and chaotic attractor interchangeably, but
in principle they are distinct [GOP84].




4.4 Three-Dimensional Dynamical Systems

We will now introduce some of the formalism for the description of a dynamical
system with three state variables. We call a dynamical system three-dimensional if
it has three independent dynamical variables, the values of which at a given instant
of time uniquely specify the state of the system. We assume that we can write the
time-evolution equations for the system in the form of the standard set of first-order
ordinary differential equations. (Dynamical systems modeled by iterated map
functions will be discussed in Chapter 5.) Here we will use x with a subscript 1, 2,
or 3 to identify the variables. This formalism can then easily be generalized to any
number of dimensions simply by increasing the numerical range of the subscripts.
The differential equations take the form

P i = £
Y=-XZ+rX - = % = H(0,x,x) (4.4-1)
Z=XY-bZ X = fi(x,%,%)

The Lorenz model equations of Chapter 1 are of this form. Note that the three
functions f,, f;, and f; do not involve time explicitly; again, we say that the system
IS autonomous.

As an aside, we note that some authors like to use a symbolic “vector” form to
write the system of equations:

x = f(¥) (4.4-2)

Here x stands for the three symbols x,,x, x, , and f stands for the three functions
on the right-hand side of Egs. (4.4-1).



The differential equations describing two-dimensional systems subject to a

time-dependent “‘force” (and hence nonautonomous) can also be written in the form
of Eq. (4.4-1) by making use of the “trick” introduced in Chapter 3: Suppose that
the two-dimensional system is described by equations of the form

X = f,(x,x,,1)

: (4.4-3)
xz - fz(xl oxzot)

The trick is to introduce a third variable, x3=t. The three “autonomous” equations

then become

X = fi(%.%,%)
X = [,(x,%5,%) (4.4-4)
x =1

which are of the same form as Eq. (4.4-1). As we shall see, this trick is particularly
useful when the time-dependent term is periodic in time.

Exercise 4.4-1. The “forced” van der Pol equation is used to describe an
electronic triode tube circuit subject to a periodic electrical signal. The
equation for g(z), the charge oscillating in the circuit, can be put in the
form

d*q dq A

—dt_2+Y(q)§;+q(’) = gsinwt

Use the trick introduced earlier to write this equation in the standard form
of Eq. (4.4-1).




4.5 Fixed Points in Three Dimensions (dim = 0)

The fixed points of the system of Egs. (4.4-1) are found, of course, by setting the
three time derivatives equal to 0. [Two-dimensional forced systems, even if written
in the three-dimensional form (4.4-4), do not have any fixed points because, as the
last of Eqgs. (4.4-4) shows, we never have x; =¢=0 . Thus, we will need other
techniques to deal with them.] The nature of each of the fixed points is determined
by the three characteristic values of the Jacobian matrix of partial derivatives
evaluated at the fixed point in question. The Jacobian matrix is

(o o o)
dx, OJx, Ox,
% % % :
J 5 e 4.5-1)
of, 9 I
| dx, Odx, Ox )

In finding the characteristic values of this matrix, we will generally have a cubic
equation, whose roots will be the three characteristic values labeled A,,4,,4; .




Some mathematical details: The standard theory of cubic equations tells us
that a cubic equation of the form

A+ pAt+gAi+r=0

can be changed to the “standard” form

by the use of the substitutions

If we now introduce

X +ax+b=0

x=A+p/3

1

=—(3g - p?
a 3(4 p°)

|
b=—@2p®-9gp+27r
27( p qp )

|
A=(-b/2+s)
|
B =(-b/2-s5)}

4.5-2)

(4.5-3)

(4.5-4)

(4.5-5)



the three roots of the x equation can be written as

A =
A, =

2, =

1
-(

A+B)

2

A+B)

2

A+ B

/

/

-+

i &

L 2

(A-B)

(A-B)

)

/

J-3
J-3

(4.5-6)

from which the characteristic values for the matrix can be found by working back
through the set of substitutions. Most readers will be greatly relieved to know that
we will not make explicit use of these equations. But it is important to know the

form of the solutions.
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the three roots of the x equation can be written as

A = A+B
\ fA-B)
A= <pSTTNAAE) S (4.5-6)
2 )\ 2
\ (A-B)
A, = _A+B_A_B_J:3-
2)k2)

from which the characteristic values for the matrix can be found by working back
through the set of substitutions. Most readers will be greatly relieved to know that
we will not make explicit use of these equations. But it is important to know the
form of the solutions.

There are three cases to consider:

um—

“standard” form L.
X’ +ax+b=0 |2

The three characteristic values are real and unequal (s < 0).

. The three characteristic values are real and at least two are equal (s =
~ 0).
don i + ﬂf_ 3. There is one real characteristic value and two complex conjugate
4: 21 values (s > 0).

Case 2 is just a borderline case and need not be treated separately.



Punti Fissi in uno Spazio degli Stati a Tre Dimensioni

The four basic types of fixed points for a three-dimensional state space are:

(1.) Node. All the characteristic values are real and negative. All trajectories in the
neighborhood of the node are attracted toward the fixed point without looping
around the fixed point.

Is. Spiral Node. All the characteristic values have negative real parts but two

of them have nonzero imaginary parts (and in fact form a complex
conjugate pair). The trajectories spiral around the node on a “surface™ as

they approach the node.
Equazione caratteristica: * / I
3 2 The three characteristic values are
A+pA +gA+r=0 —/’,;‘”‘ Node real and unequal (s < 0).
00—
“standard”’ form R
X’ +ax+b=0
[
Spiral Node There is one real characteristic value
bz aJ & and two complex conjugate values (s > 0).
=| —+ — L
4.7 e

b R



Punti Fissi in uno Spazio degli Stati a Tre Dimensioni

The four basic types of fixed points for a three-dimensional state space are:

Repellor. All the characteristic values are real and positive. All trajectories in

the neighborhood of the repellor diverge from the repellor.

2s. Spiral Repellor. All the characteristic values have positive real parts, but
two of them have nonzero imaginary parts (and in fact form a complex
conjugate pair). Trajectories spiral around the repellor (on a “surface™) as
they are repelled from the fixed point.

Equazione caratteristica: T /' [
3 2 The three characteristic values are
A +pAi+qAi+r=0 <«— e ~—p Repellor real and unequal (s < 0).

of

— oo
“standard”’ form R
xX’+ax+b=0 I
Gieat e There is one real characteristic value
: 3 . piral Repellor and two complex conjugate values (s > 0).
427 *
B R




Punti Fissi in uno Spazio degli Stati a Tre Dimensioni

For state spaces with three or more dimensions, it is common to specify the
so-called index of a fixed point.

The index of a fixed point is defined to be the number of characteristic
values of that fixed point whose real parts are positive.

In more geometric terms, the index is equal to the spatial dimension of the out-set
of that fixed point. For a node (which does not have an out-set), the index is equal
to 0. For a repellor, the index is equal to 3 for a three-dimensional state space. A
saddle point can have either an index of 1, if the out-set is a curve, or an index of 2,
if the out-set is a surface as shown in Fig. 4.3.

Index=0 Index =3

—bi‘q/— Node < ‘/'$ Repellor
~t




Punti Fissi in uno Spazio degli Stati a Tre Dimensioni

(3.) Saddle point — index-1. All characteristic values are real. One is positive
and two are negative. Trajectories approach the saddle point on a surface (the
in-set) and diverge along a curve (the out-set).
3s. Spiral Saddle Point — index—I. The two characteristic values with

negative real parts form a complex conjugate pair. Trajectories spiral
around the saddle point as they approach on the in-set surface.

Saddle point — index-2. All characteristic values are real. Two are positive
and one is negative. Trajectories approach the saddle point on a curve (the in-
set) and diverge from the saddle point on a surface (the out-set).
4s. Spiral Saddle Point — index-2. The two characteristic values with

positive real parts form a complex conjugate pair. Trajectories spiral
around the saddle point on a surface (the outi-sct) as thcy diverge from the

saddle pofﬁ{. /
| / I .
I < e—| Saddle Point The three characteristic values are
Saddle Point / Index 1 real and unequal (s < 0).
Index 2 ®
—
e & /4 . -
/ R
17 !
. The three characteristic values are
o< Saddle Point
‘/l I real and unequal (s < 0).
/4 — —o—
R




4.6 Limit Cycles and Poincaré Sections (dim = 1)

As we saw in Chapter 3, dynamical systems in two (and higher) dimensions can
also settle into long-term behavior associated with repetitive, periodic limit cycles.
We also learned that the Poincaré section technique can be used to reduce the
dimensionality of the description of these limit cycles and to make their analysis
simpler.

First, we focus on the construction of a Poincaré section for the system. For a
three-dimensional state space, the Poincaré section is generated by choosing a
Poincaré plane (a two-dimensional surface) and recording on that surface the
points at which a given trajectory cuts through that surface. (In most cases the
choice of plane is not crucial as long as the trajectories cut the surface transversely,
that is, the trajectories do not run parallel or almost parallel to the surface as they
pass through; see Fig. 4.4.) For autonomous systems, such as the Lorenz model

equations, we choose some convenient plane in the state space, say, the XY plane
for the Lorenz equations. When a trajectory crosses that plane passing from, for
example, negative Z values to positive Z values, we record that crossing point.

X3 / X3 ?
— 5
- 4—— Poincaré Plane —»

xz \ x2
X, *1

Fig. 44. A Poincaré section for a three-dimensional state space. On the left the trajectory
crosses the Poincaré plane transversely. On the right the intersection is not transverse
because the trajectory runs parallel to the plane for some distance.



In later discussions, it will be useful to indicate on the Poincaré section the
record of trajectory intersections with the plane as trajectories approach or
diverge from the periodic points. For example, Fig. 4.6 shows a sequence
of points Py, P, P,, . . . as a trajectory approaches an attracting limit cycle |
| in a three-dimensional state space. (Compare Fig. 4.6 with Fig. 3.13.)
| The reader should be warned that in some diagrams found in the literature
this series of dots will be connected with a smooth curve intersecting (x, ", |

x; ). It is important to remember that this curve is not a trajectory. In fact

the Poincaré intersection of any single trajectory is just a sequence of

points as shown in Fig. 4.6. If a smooth curve is drawn on this kind of

diagram, it represents the intersection points of an infinite family of

trajectories, all of which are approaching (x,’, x, ). Later we shall see

| cases in which such curves intersect. It is important to remember that this

| intersection does not violate the No-Intersection Theorem because the |
intersecting curves in this case are not themselves trajectories.

1.000
‘ p2 0.500
Poincaré Plane\ | ; M
\’ 7 2

000
050
1.00 100 p < ]

Fig. 4.6. The sequence of points Py, Py, P,, . . . is the record of successive intersections of a
single trajectory with the Poincaré plane (the plane with x; = 0) as the trajectory goes from x;
>0tox; <0.




MAPPA DI POINCARE’ 2D PER LO STUDIO DELLA STABILITA’ DEI CICLI LIMITE IN 3D

We now return to the general discussion of limit cycles. The stability of the
limit cycle is determined by a generalization of the Poincaré multipliers introduced
in the previous chapter. We assume that the uniqueness of the solutions to the
equations used to describe the dynamical system entails the existence of a Poincaré
map function (or in the present case, a pair of Poincaré map functions), which relate
the coordinates of one point at which the trajectory crosses the Poincaré plane to the
coordinates of the next (in time) crossing point. (Again we assume we have chosen
a definite crossing sense; e.g., from top to bottom, or from left to right.) These

functions take the form
I~=_i—. =

o !—.
;

: x|(n+l) - [.‘l(x(n)'x;n)) mappa dl (4 6-1)
- £ = (£, x") Poincaré 2 dim

i

where the parenthetical superscript indicates the crossing point number.

Here these Poincaré map functions have arisen from the consideration of a
Poincaré section for trajectories arising from a set of differential equations. In
Chapter 5, we shall consider such map functions as interesting models in their own
right, independent of this particular heritage.

The fixed points of the Poincaré section are those points that satisfy

o F'(x'.'x{) (4.6-2)
x = FK(x,x)

Each fixed point in the Poincaré section corresponds to a limit cycle in the full
three-dimensional state space.



MAPPA DI POINCARE’ 2D PER LO STUDIO DELLA STABILITA’ DEI CICLI LIMITE IN 3D

We can characterize the stability of these fixed points by finding the
characteristic values of the associated Jacobian matrix of derivatives [sometimes
called the Floquet matrix, after Gaston Floquet (1847-1920), a French
mathematician who studied, among other things, the properties of differential
equations with periodic terms]. This matrix is analogous to the Jacobian matrix
used to determine the characteristic values of a fixed point in the full state space.

The Jacobian matrix JM is given by

mappa 1 dim (9F  OF )
X, ndoell Pl 7
d,=Md, D, o dx, Ox,
d,,=M"d, | ) 9F, OF,
\I\—/ f | 9% Ox, |

mappa 2 dim

— " 4.6-3
M, (4.6-3)

_ where the matrix is to be evaluated at the Poincaré map fixed point in question.
The characteristic values of this matrix determine the stability of the limit cycle. A

" stable limit cycle attracts nearby trajectories, while an unstable limit cycle repels
nearby trajectories. In principle, we can use the mathematical methods given in
Chapter 3 to find these characteristic values. In practice, however, we most often

cannot find these characteristic values explicitly, since, to do that, we would need to
know the exact form of the Poincaré map function, and in most cases, we do not
know that function. [In Chapter 5, we will examine some models that do give us
the map function directly. However, for systems described by differential
equations in state spaces of three (or more) dimensions, it is in general impossible

to find the map functions.)



Stability of Limit Cycles

As we saw in two-dimensional systems, if the fixed point is to be stable and have
trajectories in its neighborhood attracted to it, then the absolute value of each
multiplier must be less than 1. [In state spaces with three or more dimensions, we
can have so the stability criterion is formulated using the absolute value of
the multipliers.]

The types of limit cycles are
L Stable limit cycle (node for the Poincaré map)
= IL Repelling limit cycle (repellor for the Poincaré map)

[1I. Saddle cycle (saddle point for the Poincaré map)

Table 4.2 lists the categories of characteristic multipliers, the associated
Poincaré plane fixed points and the corresponding limit cycles for three-
dimensional state spaces. (Compare this table to Table 3.4 for limit cycles in two-
dimensional state spaces.)

Table 4.2
Characteristic Multipliers for Poincaré Sectlons
of Three-Dimensional State Spaces
Type of Fixed Point Charactcnsuc Multiplier  Corresponding Cycle
Node l F 1 Limit Cycle
Repellor M, >1 Repelling Cycle
Saddle M.l <1, IM [>1 Saddle Cycle




Of course, the characteristic multipliers could also be complex numbers. Just
as we saw for fixed points in a two-dimensional state space, the complex
multipliers will form a complex-conjugate pair. In more graphic terms, the
successive Poincaré intersection points associated with complex-valued multipliers
rotate around the limit cycle intersection point as they approach or diverge from
that point. Mathematically, the condition for stability is still the same: the absclute
value of both multipliers must be less than | for a stable limit cycle. In terms of the
corresponding Argand diagram (complex mathematical plane), both characteristic
values must lie within a circle of unit radius (called the unif circle) for a stable limit
cycle. See Fig. 4.7. As a control parameter is changed the values of the
characteristic multipliers can change. If at least one of the characteristic multipliers
crosses the unit circle, a bifurcation occurs. Some of these bifurcations will be
discussed in the latter part of this chapter.
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Fig. 4.7. Characteristic multipliers in the complex plane. If both multipliers lie within a
circle of unit radius (the unit circle), then the corresponding limit cycle is stable. If one (or
both) of the multipliers lies outside the unit circle, then the limit cycle is unstable.
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Fig. 4.7. Characteristic multipliers in the complex plane. If both multipliers lie within a
circle of unit radius (the unit circle), then the corresponding limit cycle is stable. If one (or
both) of the multipliers lies outside the unit circle, then the limit cycle is unstable.




PER CHI VOLESSE APPROFONDIRE IL RUOLO DI POINCARE’ COME PRECURSORE DELLA TEORIA DEL CAOS...

FILOSOFIA COME VITA PENSATA

HOME AUTORI EDITORIALI NEES RECENSIONI SCRITTURA CREATIVA TEMI VISIONI INFORMAZIONI

(Tre) corpi al margine del caos

Di: Alessandro Pluchino
4 Gennaio 2022

https://www.vitapensata.eu/2022/01/04/tre-corpi-al-margine-del-caos/

Come e noto, il Tre & spesso considerato il numero perfetto da diversi punti di vista: dal punto di vista matematico costituisce la sintesi del
pari (due) e del dispari (uno); dal punto di vista esoterico € il simbolo della Grande Triade (Cielo, Terra, Uomo); infine, dal punto di vista
religioso, rappresenta la perfezione divina (si pensi alla Trinita del Cristianesimo o alla Trimurti induista). Pochi forse sanno, perd, che allo
stesso tempo il tre rappresenta anche la soglia dellimperfezione, il numero magico che ha condotto la fisica moderna al confine tra ordine e
disordine, in quella strana regione oggi conosciuta come “Margine del Caos”, spalancando cosi le porte alla nuova Scienza della Complessita. E

la scintilla da cui questa rivoluzione concettuale & partita riguardava un problema di corpi. Per la precisione, appunto, di tre corpi.

Tutto comincio la notte tra il 31 agosto e il primo settembre del 1879 in una miniera di
carbone di Magny, nella Borgogna francese. Alle 3.45 circa del mattino un’esplosione
improvvisa scosse la miniera, ustionando e uccidendo gran parte della squadra di ventidue
minatori che si trovavano al lavoro a quell’ora. Fu soltanto la perizia e I'acume scientifico di
un giovane ingegnere incaricato delle indagini a permettere di risalire alla causa prima
dell’esplosione: si era trattato di una lampada perforata accidentalmente che aveva lasciato
uscire la fiamma da cui poi, a contatto con un’atmosfera ricca di metano come quella della
miniera, aveva avuto inizio il processo che avrebbe portato alla conflagrazione. Quel giovane
ingegnere, appena venticinquenne, si chiamava Jules-Henri Poincaré, colui che piu avanti si
sarebbe distinto come uno dei pit grandi matematici e fisici di fine Ottocento (all’epoca si
poteva essere ingegnere, matematico e fisico allo stesso tempo!) e che & considerato oggi uno

dei padri della teoria dei sistemi dinamici e il precursore assoluto della moderna teoria del

Caos. Sara lui il principale protagonista della storia che stiamo per raccontarvi.
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