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Riepilogo dei Punti Fissi in uno Spazio degli Stati a Una Dimensione
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Esempio di Flusso 1D: PEquazione Logistica (o di Verhulst)

Exercise 3.8-3. The logistic differential equation. The following
differential equation has a “force” term that is identical to the logistic map
function introduced in Chapter 1 ; "

Parametro di controllo

X =AX(1-X) Ae[0,1]

(a) Find the fixed points for this differential equation.

PEVerhulst (b) Determine the characteristic value and type of each of the fixed points.
(1804-1849)

Modello di crescita

Avendo supposto che il numero di individui di una popolazione sia una funzione continua del tempo N(7) che ammette

derivata continua, si ha che lincremento della popolazione al variare del tempo pud essere rappresentato dalla derivata Accrescimento
di N(7), che in un modello slementare si pud supporre direttamente proporzionale al numero di individui della Malthusiano ——3)
popolazione stessa.

K = capacita di carico
saturazione
i N=rN({t) - N@= Noe" Crescita Maltusiana (esponenziale) \‘ K

di
con r: parametro di crescita malthusiana (tasso massimo di crescita della popolazione). $==Curva o

Si ha pertanto la seguente equazione differenziale: N

Pertanto se r & una costante la popolaziona cresce in maniera esponenziale con pendenza dipendents da r.
Invece in un ambiente la cui disponibilita di risorse & limitata si pud descrivere I'evoluzione della popolazione utilizzando ! N

un coefficiente r che decresce all'aumentare della popolazione: il modello piti semplica 8 r{t): =a — bN(f) conae b . e
costanti. Sostituendo tale funzione nella precedente equazione differenziale si ottiene:

dJV -» . 1 » .

= aN(t) - bN?(2)

dt . . - Confronto tra curva logistica e curva di &)
. Versione continua della Mappa Logistica

che pud essere posta nella forma; - -

dN N se a=b {K=1) . accresmr'nento esponenzxale

—— =alN (1 - f) =) N({t)=aN(-N) (malthusiano). | parametri sono:

k=10,N0=l,r=l

—
con J{ = —che & la cosiddetta popolazione massima sostenibile ed a uguale al parametro di crescita malthusiana.

b



Studio dei punti fissi del’Equazione Logistica

Exercise 3.8-3. The logistic differential equation. The following
differential equation has a “force” term that is identical to the logistic map
function introduced in Chapter |

X =AX(1-X) Ae[0,1]

(a) Find the fixed points for this differential equation.
(b) Determine the characteristic value and type of each of the fixed points.

[ o]

Punti Fissi :

a) X| _ =0-AX,(1-X,)=0 > X,=0,X,=1 f(X)=AX - AX
=% 0,2

74
X oo
dX X=X,
dF(X) repulsqre i fe
f(X)= AX — AX? —» LT 22=A-24AX \\o & | |

tralettoria

MX,=0)=A>0 - X,=0 € un repulsore (punto fisso repulsivo - instabile)
AX,=1)=A-2A=-A<0 =2 Xp=1¢& un nodo (punto fisso attrattivo - stabile)



equazione_logistica.nlogo

3 Logistic-Equation S G
ol 1 SETUP GO
4 2
dN/dt=aN (L -N/K) --> N(t+1) = N(t) + dt[aN (1 - N/K)]
©
S
o a 0.10 b 0.10
)
Q
- —
© 8;} a=b CARRYING CAPACITY: K=a/b
)
_ K
time 1
76.7
2 0 Pl |
0 time 895 dt 0.10

METODO DI INTEGRAZIONE DI EULERO

Si supponga di voler approssimare la soluzione del problema di Cauchy:
!
y(t)=Fty)  ylt) =m0
discretizzando la variabile ¢, quindi definendo t,, = t 4+ nhf. con f la dimensione di ogni intervallo. Tral, e t,,1 = t, + h il comportamento
della soluzione pud essere approssimato stimando:
Vn+1=Yn)/h = f(tn,Yn) = Yns1 = Yn + hf (En, Yn)
dove il valore di Yn ~ y(tn) risulta essere un'approssimazione della soluzione della ODE al tempo 1,,. Il metodo di Eulero & esplicito, ovvero la

soluzione Y»+1 & una funzione esplicita di ¥; perz < n.



globals [K N time cont]

to setup

ca

set-current-plot "Logistic-Equation”

set-plot-x-range @ 10
set-plot-y-range @ 1.2

if (a=b) [set b a]
set K (a /7 b)
set N NO
set cont @
do-plot

end

to go

set time (cont * dt)

; Integrazione con Eulero (primo ordine)
set N (N+ ({dt * (a*N=*( - (N7 KD

do-plot
wait 0.01

set cont cont + 1
end

to do-plot

set-current-plot-pen "N(t)"

plotxy time N

set-current-plot-pen "K"

plotxy time K
end
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dN/dt=aN (1 -N/K) -->

N(t+1) = N(t) + dt[aN (1 - N/K)]
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3.9 Dissipation Revisited in 1D | v _ £(X)

Earlier in this chapter, we mentioned that we would be interested primarily in
dissipative systems. How do we know if a particular system, here represented by a
particular function f{X), is dissipative or not? If we are modeling a real physical
system, the dissipation is due to friction (in the generalized sense), viscosity, and so
on, and usually we can decide on physical grounds whether or not dissipation is
important. However, it would be useful to have a mathematical tool that we could
use to recognize a dissipative system directly from its dynamical equations. Given
this tool we could check to see if a mathematical model we have developed (or
which someone has given to us) includes dissipation or not.

To assess dissipation, we will use an important conceptual tool: a “cluster” of
initial conditions. In the one-dimensional case, the cluster of initial conditions is

some (relatively) small segment of the X axis. (We exclude segments that contain
fixed points for what will become obvious reasons.) Let us suppose that this line
segment runs from X, to Xp (with Xz > X,). See Fig. 3.7. The length of the
segment is Xp — X;. We want to examine what happens to the length of this line
segment as time evolves and the trajectory points in that segment move through the
state space. The time rate of change of the length of this segment is given by

-:T(XB—XA)=XB-XA=f(xg)-f(x4) (3'9-1)
“velocity” of X : : “velocity” of Xg

Fig. 3.7. A “Cluster of initial conditions,” indicated by the heavy line, along the X axis.



Condizione di dissipazione 1dL _

Thus, if AX5) < fX,4), the length of the segment will shrink as time goes on. If the
line segment is sufficiently short, we can use the Taylor series expansion

f(Xp)=f(X, )+-§| (Xp—X,)+... (3.9-2)
X4

to relate fXz) to AX,). If we let L = Xp— X,, and keep only the first derivative term
in Eq. (3.9-2), then we can write Eq. (3.9-1) in the form

GX (3.9-3)
dx

in 1 dimensione: L d L

From Eq. (3.9-3), we see that the length of the segment of initial conditions will
decrease if AXp) < fAX4) or, equivalently, if dfidX is negative. This condition will be
satisfied if the trajectories are approaching a node, since the derivative of f is
negative at a node and, by continuity, in the neighborhood of a node. (We are
excluding the structurally unstable fixed points from our consideration.)

The previous analysis concentrated on the behavior near a single fixed point.
More generally, we can ask for the “average” behavior over the history of some
trajectory. It may turn out that a cluster of initial conditions first expands, as it
leaves the region around a repellor, and then later contracts as it approaches a node.
On the average, the cluster of trajectory points must experience contraction for a
bounded dissipative system.

F(Xp) < f(X,)

X, =f(X,) X,=/f(Xp) Per questo abbiamo definito un attrattore
___’__’ come «un sottoinsieme dello spazio degli
Nodo

X, L(t) < L(0) X; stati di dimensione ad esso inferiore».




Condizione di dissipazione 1dL

Thus, if AX5) < fX,4), the length of the segment will shrink as time goes on. If the
line segment is sufficiently short, we can use the Taylor series expansion

f(x,,)=f(x,)+-“£| (X=X, )+ (39-2)
ax |y,

to relate fXz) to AX,). If we let L = Xp— X,, and keep only the first derivative term
in Eq. (3.9-2), then we can write Eq. (3.9-1) in the form

~HX) (3.9-3)
dx

in 1 dimensione: 7 4 _ZU(X
From Eg. (3.9-3), we see that the length of the segment of initial conditions will
decrease if f{lXp) < fAX4) or, equivalently, if dfldX is negative. This condition will be
satisfied if the trajectories are approaching a node, since the derivative of f is
negative at a node and, by continuity, in the neighborhood of a node. (We are
excluding the structurally unstable fixed points from our consideration.)

The previous analysis concentrated on the behavior near a single fixed point.
More generally, we can ask for the “average” behavior over the history of some
trajectory. It may turn out that a cluster of initial conditions first expands, as it
leaves the region around a repellor, and then later contracts as it approaches a node.
On the average, the cluster of trajectory points must experience contraction for a
bounded dissipative system.

F(Xp) < f(X,)

F(Xp)> f(X,)

Xi=f(X)  Xp=[f(Xp) X, =f(X,) X, = f(X,)
— — — —
T — | T —
Nodo X, LO<LO) X, Repulsore X, Ln>LO) X,




Classificazione dei Sistemi Dinamici
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3.10 Two-Dimensional State Space

We now extend our discussion of state space to two-dimensional systems, where
we shall see that the greater freedom provided by the higher dimensionality
increases significantly the variety of behaviors and at the same time lifts some, but
not all, of the geometrical constraints on the pattern of fixed points. Also, we shall
see that a new type of attractor, a limit cycle, must be introduced to describe some
of these new types of behavior.

Our discussion for two-dimensional state spaces will proceed along the same
lines as the discussion of one-dimensional systems. We assume that the equations
describing the dynamics of the system can be written as a pair of coupled, first-
order differential equations for the state variables, which we shall label X, and X,.
(Occasionally, we will use x and y as the independent variables, but we want to
emphasize that in general the state space variables are not spatial coordinate

variables.) The time evolution equations are

X=f(X.X)
Xz =f2(xl'x2)

(3.10-1) Limite

SPAZIO DEGLI STATI 2D




3.13 Dissipation and the Divergence Theorem

Now we show how we can test for dissipation in two-dimensional state space. We
shall then see that, in principle, the generalization to many dimensions is easy. In
two dimensions, we start with a cluster of initial conditions of the two variables X,
and X; in some (small) area delimited by the coordinates (X, ¢, X,c) and (X5, X,5) as

shown in Fig. 3.11. C B
Again we compute the rate of change of that area
BD BA
A=(Xc- X)Xy - X,p) (3.13-1)
dA BD A B
27: (X = Xip ) o (X5 Xy ) = (X1 X)) (3.13-2)
HAX 0. X)) = [ (X5 Xop) N Xy - X3p)
D B BA
X, where we have used the time-evolution equations
Xac ‘\;l = fi(X,, X3)
Xz = f,(X,, X3)
XZB

Fig. 3.11. A rectangle of initial conditions in
state space Of two variables X, and X».




A BD A B
..-.:(Xu. - X“’){fz(xw.xz(-)“fz(xmvxza)}

dt (3.13-2)
+{f;(xl(‘°x28)_1f;(xlﬂ'XZB)}(XZ(‘ - X15)
D B BA
We make use of a Taylor series expansion
fl(xl(‘[SXZB)z Si( X5, X3p)
HX y 2 af (3.13-4)
IC: IB axl _—

with a similar expression for f;, When these expansions are substituted into Eq.
(3.13-2), we obtain, after dividing through by A

1dA _ a, df, |
+ = (fu+f2a) 3.13-5
Adi ax, X, \ G13)
X, Notazione compatta
Xac
XZB

Fig. 3.11. A rectangle of initial conditions in
state space Of two variables X, and X».




Condizione di dissipazione  1dA _ of, g af,

= <0 13-5
in 2 dimensioni: Adt 09X, 9X, ()

Once again we see that the relative growth or shrinkage of the area containing
the set of initial conditions is determined by the derivatives (here partial
derivatives) of the time evolution functions. If the right-hand side of Eq. (3.13-5) is
negative, then the initial phase space area shrinks to 0, and we say that the system is
dissipative. The trajectories all collapse to an attractor whose geometric dimension
is less than that of the original state space. For two state space dimensions, the
attractor could be a point (a node) or a curve (a limit cycle).

Xa Nodo
Attrattivo (dim=0)

L T

Ciclo limite
Attrattivo (dim=1)




Condizione di dissipazione  1dA _ af af,
in 2 dimensioni: Adt oX, ax

<0 (3.13-5)

Once again we see that the relative growth or shrinkage of the area containing
the set of initial conditions is determined by the derivatives (here partial
derivatives) of the time evolution functions. If the right-hand side of Eq. (3.13-5) is
negative, then the initial phase space area shrinks to 0, and we say that the system is
dissipative. The trajectories all collapse to an attractor whose geometric dimension
is less than that of the original state space. For two state space dimensions, the
attractor could be a point (a node) or a curve (a limit cycle). It should be (almost)

obvious that for N dimensions, the evolution of an N-dimensional volume V of
initial conditions in state space is given by

where the right-hand equality defines what is called the divergence of the set of
functions f; . If div(f) <0 on the average over state space, we know that the initial
volume of initial conditions will collapse onto a geometric region whose
dimensionality is less than that of the original state space, and we know that the
state space has at least one attractor.

Nodo
Attrattivo (dim=0)

Cluster di | Ciclo limite
condizioni iniziali Attrattivo (dim=1)
ad N dim

~ s, Altre tipologie
di Attrattori (dim<N)



X, = fi(X,.X,)
X, =f2(X,.X2)

Flussi dissipativi
in
due dimensioni

LdA_of o
Ad 93X, oxX,

<0

fixed points (dim.0)

limit cycles (dim.1)



3.10 Two-Dimensional State Space

Xi=if (X JX5)

; (3.10-1)
X, = H(X,.X,)

The behavior of the system is followed by looking at trajectories in an X;-X;
state space. Just as in one-dimension, the fixed points of Eq. (3.10-1) play a major
role in the dynamics of the system. The fixed points, of course, are those points

(X10:X2o) satisfying

f;(xlo'xh) =0
L(X,,.X5,)=0

You have probably already anticipated the next step: The character of the
fixed point and the behavior of trajectories in the neighborhood of the fixed point
are determined by the derivatives of the functions f; and f; evaluated at the fixed
point; however, since f; and f; generally depend on both X, and X, there are four
partial derivatives to consider

o O O, I
’ ’ ’ . 10-
ox,” oXx,’ oX,  oX, G0

(3.10-2)

The question then is how the characteristics of the fixed point depend on those four
partial derivatives.



A Special Case

Before considering the general problem of fixed point characteristics in two
dimensions, let us first look at a particularly simple case—the case for which only
two of the four derivatives are not equal to 0. In particular, let us assume that at the
fixed point (X, X2,) the derivatives have the following values:

-a;fl— - i —
X X, X, Valori Caratteristici
2 — .
Direzioni — (autovalor_|) (3.10-4)
Caratteristich% X o, 6 o, del Punto Fisso
(autovettori) X, '371 = a_x, =

del Punto Fisso
In this special case, what happens along the X, direction in the neighborhood of the

fixed point depends only on 4,, and what happens along the X; direction depends
only on A,. For this case, we say that the X; and X, axes are the characteristic
directions with the associated characteristic values A, and A,. (Please keep in
mind that this independence of the X; and X, motions holds only in this special case
and only in the vicinity of this fixed point.)




Types of Fixed Points in Two Dimensions

We can now begin to construct the catalog of types of fixed points in two
dimensions by fitting together the possible types of one-dimensional behavior. We
shall soon see, however, that there are new types of behavior possible in two
dimensions. In the simplest case, A and A, are both real numbers and both are
nonzero. (When a characteristic value equals O, then we need a more complicated
analysis, just as we did in one-dimension.) By using arguments like those leading
up to Eq. (3.6-3), we can see that there are four possible fixed points as listed in
Table 3.2. In Fig. 3.8, sample trajectories are shown in the neighborhood of those
fixed points.

A, <0
A, <0

X;

A,>0
A, <0

A, >0 X2 ‘
A, >0
repetior
X;
A <0 X2
A, >0

Fig. 3.8. Sample trajectories near each of
the four types of fixed points with real
characteristic values in two dimensions.

Table 3.2.

Possible Fixed Point Characters
with Real Characteristic Values

M Ay Type of Fixed Point
<0 <0 attracting node
>0 >0 repellor
>0 <0 saddle point
<0 >0 saddle point




We are now in a position to understand why a saddle point is called a saddle
point. The behavior of trajectories near a saddle point is analogous to the behavior
of a ball rolling under the influence of gravity on a saddle-shape surface as shown
in Fig. 3.9. In that picture, a ball rolling along the x axis will be attracted to the
saddle point at (0,0). A ball rolling along the y axis will roll away from (be
“repelled by”) the saddle point.

In more formal terms the connection is made by defining a function g(x,y) (to

use the variables indicated in Fig. 3.9) such that Paraboloide
iperbolico
P 0g(x, y)
x = fi(x,y) filxy) == SE
. = - (3.10-5)
y_fZ(x,y) fz(x9y)=— gax;’.

Fig. 3.9. A saddle-type surface for a two-dimensional state space. The saddle point is
located at (x,y) = (0,0).



— Dol
at a fixed point — - (3.10-5)
I)O(xo,yo) fz(x’y)=— g;” :0

- y

The “force functions™ f; and f; are given by the negative gradients of the
“potential function” g(x,y). Then at a fixed point of the f;, f; system the function g
has an extremum (a local maximum or minimum). At a saddle point, the function
g, as shown in Fig. 3.9, has a minimum while moving along the x axis but a
maximum while moving along the y axis. For a mechanical system the function
g(x,y) might represent the potential energy function for the system.

Potential Valori Caratteristici
Surface del Saddle Point
PRG3R 9°g(x,y)
x|, ox’ "
P TE )] I {65
2 ay n ay2 "

Fig. 3.9. A saddle-type surface for a two-dimensional state space. The saddle point is
located at (x,y) = (0,0).

<0

>0



Some Terminology

Saddle points, and in particular the special trajectories that head directly toward or
directly away from a saddle point, play an important role, as we shall see, in
organizing the behavior of all possible trajectories in state space. Because of this
role, special terminology has been developed to talk about these trajectories.

The sets of points that form the trajectories heading directly to (approaching
the saddle point as ¢ — o0 ) or directly away from a saddle point are sometimes
called the invariant manifolds associated with that saddle point. More specifically,
the trajectories heading directly toward the saddle point form what is called the
stable manifold (because the characteristic value A < 0 along those trajectories),
while the trajectories heading directly away from the saddle point form what is
called the unstable manifold. Other authors (e.g. [Abraham and Shaw, 1984] and
[Thomson and Stewart, 1986]) call these same manifolds insefs and oufsets
respectively. We prefer to call them in-sets and out-sets to avoid possible
confusion with the usual English meanings of the words inset and outset.

X,

in-set

out-set




The Importance of Saddle Points
To get a feeling for the importance of saddle points and their in-sets and out-sets, let
us consider a system that has only one fixed point. If that fixed point is a saddle
point, and if the characteristic values are not equal to zero, then the in-sets and out-
sets of that saddle point divide the state space up into four “quadrants.” A
trajectory that is not an in-set or an out-set is confined to the quadrant in which it
starts as illustrated in the lower half of Fig. 3.8. In that sense, the in-sets and out-
sets “organize” the state space. The out-sets and in-sets are part of the separatrices
(if there are any) for the state space.

For this kind of saddle point (for which neither of the characteristic values is
0), the trajectories near the saddle point but not on either the in-set or out-set look
like sections of hyperbolas. Hence, this kind of saddle point is called a hyperbolic
point. In fact, the term hyperbolic is applied to any fixed point whose characteristic
values are not equal to 0. (In the general case to be discussed later, the real parts of
the characteristic values are not 0.) In this language, the one-dimensional saddle
points discussed in the previous section, which we called structurally unstable, are
nonhyperbolic because the associated characteristic value is 0.

1

X, i trajectory

trajectory
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3.11 Two-dimensional State Space: The General Case

In the most general case in two dimensions, all four of the derivatives in Eq. (3.10-
3) are nonzero. How do we characterize the fixed point in that situation? It turns
out that in this case there are still just two characteristic values associated with the
fixed point, but the associated characteristic directions are no longer the X, and X,
directions, in general.

At this point a specific example will help illustrate these ideas. We will
describe the equations used to model a certain set of chemical reactions [Nicolis
and Prigogine, 1989], called the Brusselator model because its originators worked
in Brussels. The equations are

XmA-(B+DX+ XY

. (3.11-1)
Y =BX -X?%

A and B are positive numbers that represent the control parameters, and X and Y are
variables proportional to the concentrations of some of the intermediate products in
the chemical reaction. One can imagine monitoring these concentrations as
functions of time with some appropriate electrodes or with some optical absorption
measurements that are sensitive to those chemical concentrations.

Brusselator's phase space
50
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llya Prigogine
(1917-2003)

10
05t 3

0.0




The Brusselator

Model
e -
,\.r A-(B+DX + XY G.11-1)
Y =BX -X*Y

First let us find the fixed points for this set of equations. By setting the time
derivatives equal to 0, we find that the fixed points occur at the values X,Y that
satisfy

A-(B+D)X+ XY =0 (3.11-2)

BX - X*Y =0 (3.11-3)

We see that there is just one point (X,¥) which satisfies these equations, and the
coordinates of that fixed point are X, = A, Y, = B/A.

9 9
x 20 x 70

Brusselator's phase space

9% 9
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llya Prigogine
(1917-2003)
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Studio della stabilita dei Punti Fissi in due dimensioni: il caso generale

X, = f(X,.X,)

: (3.10-1)
X, = f,(X,.X;)

What is the character of that fixed point? To see how we find these
characteristic values, let us return to our general two-dimensional state space and
make use of a Taylor series expansion of Eq. (3.10-1) in the neighborhood of the
fixed points (X,q, X2):

Ay x, ..

x.l =fl(x|'xz)="(xx‘xm)'éx_'*'(xz'Xzo)ax2 (3.11-4a)
DISTANZA DELLA TRAIETTORIA : DISTANZA DELLA TRAIETTORIA
DAL PUNTO FISSO LUNGO L'ASSE X, \ a / DAL PUNTO FISSO LUNGO L'ASSE X,
. )
X = B X=X x,o)s)f%ﬂx, -x,,)ft.. (3.11-4b)
1 2

In Eq. (3.11-4), we have evaluated the derivatives at the fixed point (X,,, X2), and
the ellipsis indicates all derivatives higher than the first, which we are ignoring.
(Note that we use partial derivatives in the Taylor series expansion because the
functions depend on both X, and X;.) It is useful to introduce new variables x, = (X,
- X0 and x; = (X3 = Xp,), which indicate the deviation away from the fixed point.
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X, = £i(X,, X,) = (X, .)(,‘,)5-{-(-']4»()(2 -X2°)5%+... (3.11-4a)

) d
§%+(x,-xzo)i+... (3.11-4b)

x.2=»f2(xl’xz)=(xl'xlo) ax,

x=(X; - X)) and x; = (X3 = Xp,)

Noting that
%=X, and &, = X, (3.11-5)
and ignoring all the higher-order derivative terms, we may write Eq. (3.11-4) as
. 9 d .
benoxy | RTaeas b
X, = £, %) T it |
— 2

Please note that Egs. (3.11-6) are linear, first-order differential equations with
constant coefficients (the factors multiplying x, and x, are independent of time) for
the new state variables x; and x,. There are many standard techniques for solving
such differential equations. We shall use a method that gets us to the desired results
as quickly as possible.
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xl-axlxl-"
. 0
h=gins

To simplify the notation, we shall write

fy= 9. (3.11-7)

dx f

where i/ and j = | or 2. First, we find a differential equation for x; alone by
differentiating the first equation in Eq. (3.11-6) with respect to time and then
eliminating X, by the use of the second equation in Eq. (3.11-6):

-x.l - f;lxl + f;2x2 (3.1 1-8)
= fuk + fu(fux + fox)
We now use the first of Eq. (3.11-6) again to eliminate x;:
% =+ )t (fofo = fufe)n (3.11-9)

To solve Eq. (3.11-9), let us assume that the solution can be written in the
form

soluzione particolare x (1) = Ce (3.11-10)

where A is a constant to be determined, and C is a constant (independent of time) to
be determined from the initial (¢ = 0) conditions. Let us pause a second to note that
if A is positive (and real) then the trajectory will be repelled by the fixed point; that
is, we have an unstable fixed point. If A is negative (and real), then the trajectory
approaches the fixed point; that is, we have a stable fixed point. As we shall see
later, A may also be a complex number.



X =y + )+ (fufy = fufa)x 3.11-9)
x, (1) = Ce (3.11-10)

Let us return to our solution. If we use Eq. (3.11-10) in Eq. (3.11-9), then we
find that

A =(fu+ LA+ (fufoy — fufu) =0 (3.11-11)

We call Eq. (3.11-11) the characteristic equation for A, whose value depends only
on the derivatives of the time evolution functions evaluated at the fixed point. Eg.
(3.11-11) is a quadratic equation for A and in general has two solutions, which we
can write down from the standard quadratic formula:

_ Sutfa :t‘[(fu L3 fzz)2 —4(fi1fo — 2 Sfn)
2

We have denoted A, as the result obtained with the + sign in front of the square root
in Eq. (3.11-12) and A. the result obtained with the — sign. Obviously, the
characteristic values will be real numbers if the argument under the square root sign
in Eq. (3.11-12) is positive. They will be complex numbers if the argument is
negative. |

The most general solution of Eq. (3.11-9) can then be written as

A (3.11-12)

soluzione generale x,(t) = Ce™” + De*Y (3.11-13)

where C and D are constants that can be found from the initial conditions
x(=0)and x,(r=0).



2— -
=f;|+f22:t‘[(fu+f222) 4 fir S — fufu) (.11-12)

3.12 Dynamics and Complex Characteristic Values

A,

What are the dynamics of the system when the characteristic values are not real, but
are complex numbers? This situation occurs when the argument of the square root
in Eq. (3.11-12) for the characteristic values is negative. We shall find that this
case describes behavior in which trajectories spiral in toward or away from the
fixed point, as illustrated in Fig. 3.10.

When the argument of the square root in Eq. (3.11-12) is negative, we may
write the characteristic values as

A:=R1iQ (3.12-1)
3 3
x x spiral repellor *
2 |- spiral node * 2 -
. =
0 . o L -
-1 -1
-2 b= «2 |
3 L1 1 1 | § 3 I I I
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x1 x]

Fig. 3.10. A spiral node (left) and a spiral repellor (right) occur when the characteristic
values of a fixed point are complex numbers.



A+ =R1iQ

where i=+J-1

A,

1
=f;l+f22:tJ(fll+f22)2—«ﬂlfu-fiz‘fn) R=5(f“+f22)

2

Q=%Mu+ f2) -4(fufn- fofu) (3.12-2)

Using the standard mathematical language of complex numbers, we say that R is
the “real part” and Q is the “imaginary part” of these complex numbers. The two
eigenvalues A+ and A- form a complex conjugate pair: A. is the complex
conjugate of A - and vice versa. To see what the trajectory behavior is like in this
case, we use these characterisffc values in the equation for x,(¢):

x,(t) = Ce(l.)l + De(L )T}

=e" [Cen' + De™ ] S

To see what is going on, let us consider the special case x,(0) = 0, which tells
us that C=- D. We now use the famous Euler formula

e® =cos@+isin@ ——1 sinh=
to write

x,(t) = Fe" sin(Qt) (3.12-5)



f12%2(0)
Q

where F is a constant that depends on x5(0). From this result we see that x;
oscillates in time with an angular frequency Q while the amplitude of the
oscillation increases or decreases exponentially (depending on whether R>0 or R <
0). x; undergoes similar behavior. The corresponding state space behavior is
shown schematically (with different initial conditions) in Fig. 3.10. For more
general initial conditions, the state space behavior is still the same: oscillations
with exponentially increasing or decreasing amplitude.

x,(t)=Fe"sin(Qt) —— F=x

3 3
x P spiral repellor *
. 2 - 5 node * p A -
x,(1) = Fe® sinQr o
: - i =
x,(t) = F,e" sinQt
0 . 0 |- .
~f12x2(0) -1 -1
17 a
f ( ) i, X - R<O oF | R>O
21%1(0
F, = a0 3 [ 1 1 1 3 | [
-3 2 -1 0 | z 3 -3 2 -1 0 | zZ 3
x| x]

Fig. 3.10. A spiral node (left) and a spiral repellor (right) occur when the characteristic
values of a fixed point are complex numbers.



For the fixed point on the left in Fig. 3.10, we say we have a spiral node

(sometimes called a focus) since the trajectories spiral in toward the fixed point.
On the right in Fig. 3.10, we have a spiral repellor (sometimes called an unstable
focus). In the special case when R = 0, the trajectory forms a closed loop around
the fixed point. This closed loop trajectory is called a cycle. If trajectories in the
neighborhood of this cycle are attracted toward it as time goes on, then the cycle is
called a limit cycle. We need a more detailed analysis to see if this cycle is itself
stable or unstable. An analysis of cycle behavior will be taken up in Section 3.16.

It is important to realize that the spiral type behavior shown in Fig. 3.10 and
the cycle type behavior discussed in the Section 3.16 are possible only in state
spaces of two (or higher) dimensions. They cannot occur in a one-dimensional
state space because of the No-Intersection Theorem (recall Exercise 3.8-2).

3 3
%2 x R CICLO LIMITE
R - p A spiral node * 2 -
x,(t)= Fe" sinQt
1 - 1 -
x,(t) = Fe" sinQt
0 - - 0 B -
1
R=-E(fu+fu) i - -1 —
Q=%‘Mf||+fn)z—4(fnfn-f|2f2|)l o, 1 - R<O 2 |- R>O R
P A T T T A S S A ot
302 -1 0 1 2. 3 3 2 -1 0 1 2 3
xt X]

Fig. 3.10. A spiral node (left) and a spiral repellor (right) occur when the characteristic
values of a fixed point are complex numbers.

0



