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A “cluster of initial conditions,” indicated by the heavy line, along the X axis.



Riepilogo dei Punti Fissi in uno Spazio degli Stati a Una Dimensione
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Riepilogo dei Punti Fissi in uno Spazio degli Stati a Una Dimensione

X'x:n =f(X,)=0

Punti Fissi
Strutturalmente —=
Stabili

Xx= df X
dX |,
Equazione linearizzata
per la distanza dal Punto Fisso

-}x(:) = x(0)e”
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Studio della stabilita dei Punti Fissi in due dimensioni: il caso generale

= £i(X,.X,) [i(X1e.X3) =0
X, =L(X,.X,) fz(xno-xzo)=0

=P FIXED POINTS

PER CIASCUN PUNTO FISsO (X, X,,) :

X d of 1
X, =ﬁ(x,,x2)=(x,-x,°)a)f{ +(X, Xzo)af (3.11-4a)
/ ’ X3 x =X -X
DISTANZA DELLA TRAIETTORIA DISTANZA DELLA TRAIETTORIA 0
DAL PUNTO FISSO LUNGO L’ASSE X, \ / DAL PUNTO FISSO LUNGO UASSEX, |y — X. — X
9 2 2 20
fz ... (3.11-4b)

X = (X, X,) =(X, - x'°)aX, X,

and ignoring all the higher-order derivative terms, we may write Eq. (3.11-4) as

. ~ . O, df,
Equazioni b e~ soluzioni particolari
linearizzate a-l'l axz At
~ ——  x()=Ce
attorno al af af
punto fisso X, ==*x +=—%x,
_ " dx,  Ox,
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Studio della stabilita dei Punti Fissi in due dimensioni: il caso generale

*,=f,(x,_x2) fi(Xig X3) =0 ———>  FIXED POINTS
X, =£H(X,.X;) f(X5.X3,) =0

PER CIASCUN PUNTO FISsO (X, X,,) :

Equazione Caratteristica
%

A =(fa+ f2)A+(funfor = fu fu) =0 con J, T %
J

We call Eq. (3.11-11) the characteristic equation for A, whose value depends only
on the derivatives of the time evolution functions evaluated at the fixed point. Eg.
(3.11-11) is a quadratic equation for A and in general has two solutions, which we
can write down from the standard quadratic formula:

2 Valori =f;1+fzzi‘/(fll+f”)z —4(fi1 S — 2 Sa)

caratteristici | A, 5

/ saddle points
X

reali A: = R in-set:
N Saddle

0




Studio della stabilita dei Punti Fissi in due dimensioni: il caso generale

X, = £i(X,.X;) [i(X16.X3,) =0
x.z=fz(xl-xz) f(X5.X3,) =0

=P FIXED POINTS

PER CIASCUN PUNTO FISsO (X, X,,) :

Equazione Caratteristica
9

A =(fu+ L)A+ (fuSr = fa fu) =0 con Jy >
J

We call Eq. (3.11-11) the characteristic equation for A, whose value depends only
on the derivatives of the time evolution functions evaluated at the fixed point. Eg.
(3.11-11) is a quadratic equation for A and in general has two solutions, which we
can write down from the standard quadratic formula:

2 Valori =f;1"'fzzi‘/(fll+f”)z —4(fi1 S — 2 Sa)

caratteristici | A, 5

/ \ complessi

reali |A+ = R A+ =RtiQ

coniugati

Direzioni caratteristiche

R s ?



Studio della stabilita dei Punti Fissi in due dimensioni: il caso generale

xl = £i(X,.X;) [i(X16.X3,) =0
Xz=fz(x|-xz) f(X5.X3,) =0

=P FIXED POINTS

PER CIASCUN PUNTO FISsO (X, X,,) :

Equazione Caratteristica

J,
2 i
A" =(fu+ L)A+(fufoy — fufu) =0 con f, -'a—xl‘
J
Le distanze del punto rappresentativo del sistema dal
punto fisso lungo i due assi dello spazio degli stati
spiraleggiano nei dintorni del punto:
f12%2(0)
Rt - ~ o = 7
: x,(1) = Fe" sinQt by ~=5
A: = Rilg R con:
x,(1) = F,e} sinQt f21%1(0)
l o=

1
3 = R=—=(fu+ fn) 1 -
@ @ Sl XY =T

R<0: spiral node  R<O: spiral repellor



Studio della stabilita dei Punti Fissi in due dimensioni: il caso generale

X, = f(X..X,)
Xz =fz(x|-xz)

f;(xlo'xh) =0
LH(X,,.X5,)=0

=P FIXED POINTS

PER CIASCUN PUNTO FISsO (X, X,,) :

Equazione Caratteristica

)
A =(fu+ f2)A+(fufor = o Ju) =0 con f, =a—f‘
J
Le distanze del punto rappresentativo del sistema dal
punto fisso lungo i due assi dello spazio degli stati
spiraleggiano nei dintorni del punto:
ry——s x,(t)= Fe® sinQt Ma cosa succede
= I
x,(t) = F,e® sinQt nel caso R =07

‘ CICLO R=0
LIMITE!

R<0: spiral node  R>0: spiral repellor



Metodo dello Jacobiano per studiare i punti fissi nel caso generale a 2 dim.

Equazioni linearizzate nelle vicinanze
di un dato punto fisso ( X;,,X5. )

. Dist dal
E(.qua2|on| originarie x‘ _ af; ‘4 af; . pljnatr;z]:ssg
X, = £(X,.X,) | — o o, o, [v=x-x,
. ...ricavare with fu = =L
X2 =f2(X,.X2) i punti fissi... ) aed afz afz ax} x,=X,-X,,
X Sty t—= ...calcolate nel
J 2 2 punto fisso

3.14 The Jacobian Matrix for Characteristic Values

We would now like to introduce a more elegant and general method of finding the
characteristic equation for a fixed point. This method makes use of the so-called
Jacobian matrix of the derivatives of the time evolution functions. Once we see
how this procedure works, it will be easy to generalize the method, at least in
principle, to find characteristic values for fixed points in state spaces of any
dimension. The Jacobian matrix for the system is defined to be the following
square array of the derivatives:

Autovalori

Matrice Jacobiana J=(f“ f") ) (2,4 (3.14-1)

o fa

where the derivatives are evaluated at the fixed point. We subtract A from each of
the principal diagonal (upper left to lower right) elements and set the determinant of
the matrix equal to O:




Metodo dello Jacobiano per studiare i punti fissi nel caso generale a 2 dim.

Eq. agli autovalori

f;l—l f;z

[ fu S ~_ a= _ _ ,=0
J-(fn fn] JVv=AV|—> det(J-AI)=0 — ’ fi fr = A

Equazione cara:tteristica dello Jacobiano

'

A =(fu+ LA+ (S Sy = fafu) =0 (3.11-11)

Autovalori \/ 3
dello — Sut St + ) =4 fi S — fafu) (3.11-12)

Jacobiano 2

Multiplying out the determinant in the usual way then yields the characteristic
equation (3.11-11). The Jacobian matrix method is obviously easily extended to d-
dimensions by writing down the d-by-d matrix of derivatives of the d time-
evolution functions f,, forming the corresponding determinant, and then (at least in
principle) solving the resulting dth order equation for the characteristic values.

We now introduce some terminology from linear algebra to make some very
general and very powerful statements about the characteristic values for a given
fixed point.




X,
X Reminder: condizione affinche un cluster di
condizioni iniziali collassi su un attrattore stabile
1
Xo8 i ( _.i‘ﬂ=(fu+fzz)<0 — | TrJ <0
| | A dt
Xia Wiy M

First, the frace of a matrix, such as the Jacobian matrix (3.14-1), is
defined to be the sum of the principal diagonal elements. For Eq. (3.14-1) this is

explicitly Traccia dello Jacobiano
Trl = £, + fin (3.14-3)

x(t)= Fe®sinQr According to Eq. (3.13-5), however, this is just the combination of derivatives
x,(1) = F,e® sinq; eeded to test whether or not the system’s trajectories collapse toward an attractor.
To make a connection with the previous section, we note that 7rJ = 2R, so that we

R= %( fu+fu)  seethat the sign of 7rJ determines whether the fixed point is a node or a repellor.




Reminder: condizione affinche un cluster di
condizioni iniziali collassi su un attrattore stabile

1 dA
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e
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First, the frace of a matrix, such as the Jacobian matrix (3.14-1), is
defined to be the sum of the principal diagonal elements. For Eq. (3.14-1) this is

explicitly Traccia dello Jacobiano
Trl = f,, + fzz (3.14-3)

According to Eq. (3.13-5), however, this is just the combination of derivatives
needed to test whether or not the system’s trajectories collapse toward an attractor.
To make a connection with the previous section, we note that 7rJ = 2R, so that we

see that the sign of 7rJ determines whether the fixed point is a node or a repellor.

Linear algebra also tells us how to find the directions to be associated with the

characteristic values.

In linear algebra this procedure is called “finding the eigenvalues and
eigenvectors of the matrix.” For our purposes, the eigenvalues are the characteristic
values of the fixed point and the eigenvectors give the associated characteristic
directions. However, we will not need these eigenvectors for most of our purposes.
The interested reader is referred to the books on linear algebra listed at the end of

the chapter.




fu Sfa
J =
% 1)
We now introduce one more symbol:

Determinante dello Jacobiano: A = f, f,, = f;, /i, (3.14-6)

A is called the determinant of that matrix. Then we may show that the nature of
the fixed point is determined by 7rJ and A as listed in Table 3.3.

_ St Sa £+ fa -8 S~ Fafw) ;TR EN(TrIY -4A

A 2 - 2
A:=RtiQ
x,(t) = Fe" sinQt _ Table 3.3
. Fixed Points for Two-dimensional State Space
X, (1) = Fye” sinQt | Tr] <0 TrJ >0
) A>(1/4XTrl )’ spiral node spiral repellor
Rel7g 0<A<(1/4)Tr])? node repellor
) A<O saddle point saddle point
Q= %\/Trf —4A
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Riepilogo dei Punti Fissi in uno Spazio degli Stati a Due Dimensioni
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Diagramma dei Punti Fissi in uno Spazio degli Stati a Due Dimensioni
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Summary of Fixed Point Analysis for Two-dimensional State Space

K

Write the time evolution equations in the first-order time derivative form of
Eq. (3.10-1).

Xl = £i(X,, X,)

; (3.10-1)
X, = (X, X;)

Find the fixed points of the evolution by finding those points that satisfy

£i(X,,X;)=0
[(X,X,)=0

At the fixed points, evaluate the partial derivatives of the time evolution
functions to set up the Jacobian matrix

J 2(22 22) (3.14-1)

Evaluate the trace and determinant of the Jacobian matrix at the fixed point and

use Table 3.3 to find the type of fixed point.
Use Eq. (3.11-12) to find the numerical values of the characteristic values and
to specify the behavior of the state-space trajectories near the fixed point with

Eq. (3.11-13).
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Determinant

compute the determinant of a matrix

| determinant of {34142,1)

[Gel. 3,5}, £6.-9. 7, 1,6, 1)
det {fa, b, ¢}, {d, e, . {g, h, ]}

Row Reduction

row reduce a matrix

[row reduce {{2.1.0,-3},{3-1.0,1}414.2-5)

row reduction calculator 1

Eigenvalues & Eigenvectors

compute the eigenvalues of a matrix

eigenvalues {{4,1},{2,-1}}
compute the eigenvectors of a matrix
eigenvectors {{1,0,0},{0,0,1},{0,1,0}}

compute the characteristic polynomial of a matrix

| characteristic polynomial {{4,1}.{2,-1}}
Diagonalization

diagonalize a matrix

| diagonalize {{1,2),{3,4)}

Matrix Decompositions »

compute the LU decomposition of a square matrix

| LU decomposition of {{7,3,-11},{-6,7,10},{-11,2,-2}}

compute a singular value decomposition
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6.4 Rabbits versus Sheep

In the next few sections we'll consider some simple examples of phase plane
analysis. We begin with the classic Lotka—Volterra model of competition between
two species, here imagined to be rabbits and sheep. Suppose that both species are
competing for the same food supply (grass) and the amount available is limited.
Furthermore, ignore all other complications, like predators, seasonal effects, and
other sources of food. Then there are two main effects we should consider:
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6.4 Rabbits versus Sheep

In the next few sections we'll consider some simple examples of phase plane
analysis. We begin with the classic Lotka—Volterra model of competition between
two species, here imagined to be rabbits and sheep. Suppose that both species are
competing for the same food supply (grass) and the amount available is limited.
Furthermore, ignore all other complications, like predators, seasonal effects, and
other sources of food. Then there are two main effects we should consider:

Accrescimento
Malthusiano =)

l. Each sEcies would Zrow 1o its caﬂing cagacilx in the absence of the

other. This can be modeled by assuming logistic growth for each
species (recall Section 2.3). Rabbits have a legendary ability to repro-
duce, so perhaps we should assign them a higher intrinsic growth rate.

N K = s saturazione
= capacita )
di carico K
¢=—Curva
logistica
B e ‘-“0
- . | " "

Confronto tra curva logistica e curva di /)

accrescimento esponenziale
(malthusiano). | parametri sono:

k=10N,=1r=1
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6.4 Rabbits versus Sheep

In the next few sections we'll consider some simple examples of phase plane
analysis. We begin with the classic Lotka—Volterra model of competition between
two species, here imagined to be rabbits and sheep. Suppose that both species are
competing for the same food supply (grass) and the amount available is limited.
Furthermore, ignore all other complications, like predators, seasonal effects, and
other sources of food. Then there are two main effects we should consider:

1. Each species would grow to its carrying capacity in the absence of the
other. This can be modeled by assuming logistic growth for each
species (recall Section 2.3). Rabbits have a legendary ability to repro-
duce, so perhaps we should assign them a higher intrinsic growth rate.

2. When rabbits and sheep encounter each other, trouble starts. Some-
times the rabbit gets to eat, but more usually the sheep nudges the
rabbit aside and starts nibbling (on the grass, that is). We’ll assume
that these conflicts occur at a rate proportional to the size of each
population. (If there were twice as many sheep, the odds of a rabbit
encountering a sheep would be twice as great.) Furthermore, we as-
sume that the conflicts reduce the growth rate for each species, but
the effect is more severe for the rabbits.




x=0—->x=0

A specific model that incorporates these assumptions is y=2y(1— Yy )
B 2

/ll:,:;zy) [b=1,a=K =2]
y@x@‘\ 1

where >
x(t) = population of rabbits, Sh
Rabbit y(t) = population of sheep €ep
y=0—y=0 and x,y = 0. The coefficients have been chosen to reflect this scenario, but are oth-_
_ X erwise arbitrary. In the exercises, you'll be asked to study what happens if the co-
X =3x(1- 5) efficients are changed.
|b=La=K=3]~ 1| 1. Each species would grow to its carrying capacity in the absence of the
* other. This can be modeled by assuming logistic growth for each
Mt trans — species (recall Section 2.3). Rabbits have a legendary ability to repro-

duce, so perhaps we should assign them a higher intrinsic growth rate.

B K= capacita < ‘
-

di carico

' || 2. When rabbits and sheep encounter each other, trouble starts. Some-
ogetes | times the rabbit gets to eat, but more usually the sheep nudges the
: rabbit aside and starts nibbling (on the grass, that is). We’ll assume
s o e ' that these conflicts occur at a rate proportional to the size of each
- DR - population. (If there were twice as many sheep, the odds of a rabbit
dN N encountering a sheep would be twice as great.) Furthermore, we as-
— =aN (1 - —) sume that the conflicts reduce the growth rate for each species, but

dt K __ .

a the effect is more severe for the rabbits.
con i = 3



x=0—->x=0

A specific model that incorporates these assumptions is y=2y(1— Yy )
B 2

x=x(3-
[b=1a=K
" /{y y(@y)<\ 1

v where
x(t) = population of rabbits,

Rabbit y(t) = population of sheep

Sheep

and x,y = 0. The coefficients have been chosen to reflect this scenario, but are oth-_
erwise arbitrary. In the exercises, you'll be asked to study what happens if the co-
efficients are changed.

I. Each species would grow to its carrying capacity in the absence of the

other. This can be modeled by assuming logistic growth for each

3

species (recall Section 2.3). Rabbits have a legendary ability to repro

duce, so perhaps we should assign them a higher intrinsic growth rate.

2. When rabbits and sheep encounter each other, trouble starts. Some-
times the rabbit gets to eat, but more usually the sheep nudges the
rabbit aside and starts nibbling (on the grass, that is). We’ll assume
that these conflicts occur at a rate proportional to the size of each
population. (If there were twice as many sheep, the odds of a rabbit
encountering a sheep would be twice as great.) Furthermore, we as-
sume that the conflicts reduce the growth rate for each species, but
the effect is more severe for the rabbits.




x=0->x=0
A specific model that incorporates these assumptions is §=2y(1— y )
: - 2
x=x(3=-x-=2y) (b=la=K=2]
).' = y(z -X= y) \ .
where 1 >
x(t) = population of rabbits,
y(t) = population of sheep Sheep
y=0—y=0 and x,y = 0. The coefficients have been chosen to reflect this scenario, but are oth-_
_ X erwise arbitrary. In the exercises, you'll be asked to study what happens if the co-
x=3x(1- 5) efficients are changed.
[b=1,a=K =3]

To find the fixed points for the system, we solve x =0 and y=0 simultanc-
ously. Four fixed points are obtained: (0,0), (0,2), (3,0), and (1,1).

Solutions:
x=0, y=2
x=1, y=1
R WolframAlpha i
x=3, y=0
| X(3%2y)=0, y(2xy)=0 G)
y=0, x=0

R I O I == TS = Examples =2 Random



x=0—->x=0

A specific model that incorporates these assumptions is y=2y(1— Yy )
B 2

/){J?=I(3-X-2>’) [b=la=K =2]
>"=y(2-x-y)"\ 1

x(t) = population of rabbits,

¥(t) = population of sheep Sheep

y=0—y=0 and x,y = 0. The coefficients have been chosen to reflect this scenario, but are oth-
_ X erwise arbitrary. In the exercises, you'll be asked to study what happens if the co-
X =3x(1- 5) efficients are changed.

[b=1,a=K =3]

To find the fixed points for the system, we solve x =0 and y=0 simultane-
ously. Four fixed points are obtained: (0,0), (0,2), (3,0), and (1,1). To classify
them, we compute the Jacobian:

I X
o P73 %7 _ 3-2x-2y -2x Sciutions:
-3 —y 2-x-2y)
ox av X = 0 sy Y= 2
x=1, y=1
R WolframAlpha i
x=3, y=0
| X(3%2y)=0, y(2xy)=0 G)
y=0, x=0

R I O I == TS = Examples =2 Random



Now consider the four fixed points in turn:

3
((H): Then J =(

ﬁWolframAlpha computations

g

e O B == s

0 [ {{3,03,{0,2)
" )

The cigenvalues are A =3, 2 so (0,0) is an unstable node. ‘I'rajectories leave

the origin parallel to the cigenvector for A = 2, i.c. tangential to

v =(0,1), which spans the y-axis. (Recall the general rule: at a
node, trajectorics are tangential to the slow eigendirection,
which is the cigendirection with the smallest |A].) Thus, the

y
vV,
Vi
x
Figure 6.4.1

phase portrait near (0,0) looks like Figure 6.4.1.

TrJ = E (Trj)z —4A>O .—).2.*,1_ reali e positivi

unstable nodes

REPELLORS

= Examples =2 Random

Eigenvalues: Eigenvectors:

-\]=3 vl=(1vo)
-‘2=2 V§=(0, l)

A=6>0
TrJ =5>0
(Tr])* —4A=1>0



#WOlframAlpha, putational. | Eigenvalues: Eigenvectors:

Ay = -2 vi=(0,1)

| (1034220 =)

R 2y = Examples =2 Random A2 =-1 va =(-1,2)

£ A=2>0

(0,2): 'l'han=(_2 _2). Tr] =—3<0 ’g":lﬁ
(Tr]) —4A =150 " \\\
This matrix has eigenvalues A =—1,-2, as can be seen from inspection, since v, A\
the matrix is triangular. Hence the fixed point is a stable node. Trajectories ap-
proach along the cigendirection associated with A = —1 ; you can check that this di- -

rection is spanned by v =(-1,2). Figure 6.4.2 shows the phase portrait near the Figure 6.4.2

fixed point (0,2).

~

TrJ b2 e oo (TrJ)2—4A>O ._).A't"l' reali e negativi

s
i

NODES

Ol
/ o



(3,0): Then J =

o -l

and A =-3,~1.

This is also a stable node. The trajectories approach along the slow eigendirec-

tion spanned by v =(3,-1), as shown in Figure 6.4.3.

A=3>0
TrJ =—4<0
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(@) -48350 AL

le nodes ¥ imm
NODES :

&

reali e negativi

Eigenvalues:

| Eigenvectors:

V1= (1s 0)

Va = (_3s 1)



(L1): Then J= ! ) which has T=-2, A=-1, and A=-1++2.

Hence this is a saddle point. As you can check, the phase portrait near (1,1) is as
shown in Figure 6.4 .4.

y Eigenvalues: Eigenvectors:
A=-1<0
M -241421  vi=(V2,1)
Tr) =—2<0 X I
Ao ~ 0.414214 v =(-V2,1)

Figure 6.4.4
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Combining Figures 6.4.1-6.4.4, we get Figure 6.4.5, which already conveys a
good sense of the entire phase portrait. Furthermore, notice that the x and y axes
contain straight-line trajectories, since x =0 when x =0, and y =0 when y=0.

Pa
{5:=x(3-x-2y) y \\
y=y2-x-y) X

Figure 6.4.5

Now we us¢ common sense to fill in the rest of the phase portrait (Figure 6.4.6).
For example, some of the trajectorics starting near the origin must go to the stable
node on the x-axis, while others must go to the stable node on the y-axis. In be-
tween, therc must be a special trajectory that can’t decide which way to turn, and
so it dives into the saddle point. This trajectory is part of the stable manifold of the
saddle, drawn with a heavy line in Figure 6.4.6.

Pa

y

) stable
In-set, manifold




Ritratto globale nello spazio degli stati

The other branch of the stable manifold consists of a trajectory coming in “from in-
finity.” A computer-generated phase portrait (Figure 6.4.7) confirms our sketch.
The phase portrait has an inter-
esting biological interpretation. It
shows that onc species generally
drives the other to extinction. Tra-
jectories starting below the stable
manifold lead to eventual extinc-
tion of the sheep, while those start-
ing above lead to eventual
extinction of the rabbits. This di-
1 2 3 &rabbits chotomy occurs in other models of
competition and has led biologists
to formulate the principle of com-
petitive exclusion, which states that two species competing for the same limited re-
source typically cannot coexist.

Figure 6.4.7

Gause G.F. (1934)
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Our example also illustrates some general mathematical concepts. Given an at-
tracting fixed point x *, we define its basin of attraction o be the set of initial con-
ditions x, such that x(r) = x* as r — oo, For instance, the basin of attraction for
the node at (3,0) consists of all the points lying below the stable manifold of the
saddle. This basin is shown as the shaded region in Figure 6.4.8.

basin boundary =
stable manifold of saddle
sNbOeliEo SADDLE
LEW
2
1
1 4

REPELLOR diiis i
D

Because the stable manifold separates the basins for the two nodes, it is called the
basin boundary. For the same reason, the two trajectories that comprise the stable
manifold are traditionally called separatrices. Basins and their boundaries are im-
portant because they partition the phase space into regions of different long-term
behavior.
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Sistema dinamico con due parametri di controllo e punti fissi con autovalori complessi coniugati

Example: The Brusselator Model
As an illustration of our techniques, let us return to the Brusselator Model given in
Eq. (3.11-1).

X =A =(B4+DX + X2Y Diversamente da «Rabbits vs Sheep»,
le equazioni del Brussellators hanno

The Brusselator Model Y =BX - XY due parametri di controllo A e B

First let us find the fixed points for this set of equations. By setting the time
derivatives equal to 0, we find that the fixed points occur at the values X,Y that
satisfy

A-(B+)X +X’Y =0 (3.11-2)
BX - X*Y =0 (3.11-3)

We see that there is just one point (X,Y) which satisfies these equations, and the
coordinates of that fixed point are X, = A, ¥, = B/A.

llya Prigogine
(1917-2003)




Sistema dinamico con due parametri di controllo e punti fissi con autovalori complessi coniugati

X=A-(B+D)X + X . The Jacobian matrix for that set of equations is
Y =BX - XY o 2 o
y=|B-D A} A=a (3.14-7)
-B  -A"] Tr=(B-1)-A

1 punto fisso:

Xo=A,Y,=BIA Following the Jacobian determinant method outlined earlier, we find the
characteristic values:

- TrJ £ ~/(TrJ)> — 4A - & =1[(B-l)-A’]

| 2 2 (3.14-8)
1:1\/(A2 -(B-1)) -44? A=1
- TrJ=B-2
In the discussion of this model, it is traditional to set|A = 1|and let B be the
control parameter. Let us follow that tradition. We see that with @ < 2, both
characteristic values have negative real parts and the fixed point is a spiral node.
This result tells us that the chemical concentrations tend toward the fixed point
values X, =A =1, Y, = B as time goes on. They oscillate, however, with the
frequency Q =|B(B- 4), as they head toward the attractor. For|2 < B < 4, [the
fixed point becomes a spiral repellor. However, our analysis cannot tell us what
happens to the trajectories as they spiral away from the fixed point. As we shall
learn in the next section, they tend to a limit cycle as shown in Fig. I.1 in Section I
(for a different model).

Ex: A=1,B=1 2> A=1, Tr)=-1, TrJ2-4A<0 : Spiral Node (B<2)
A=1,B=3 =2 A=1, TrJ=1, TrJ2-4A<0 : Spiral Repellor (2<B<4)

Brusllator's phase space
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llya Prigogine
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Diagramma dei Punti Fissi in uno Spazio degli Stati a Due Dimensioni
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3.15 Limit Cycles

In state spaces with two or more dimensions, it is possible to have cyclic or periodic
behavior. This very important kind of behavior is represented by closed loop
trajectories in the state space. A trajectory point on one of these loops continues to
cycle around that loop for all time. These loops are called limit cycles if the cycle is
isolated, that is if trajectories nearby either approach or are repelled from the limit
cycle. The discussion in the previous section indicated that motion on a limit cycle
in state space represents oscillatory, repeating motion of the system. The
oscillatory behavior is of crucial importance in many practical applications, ranging
from radios to brain waves.

- o I SPIRAL
1rJ < 0 ° Pe NODE @
(TrJ) —4A<0 A, A - o

complessi @ SPIRAL

conivgati | Tr/>0 ® Re REPELLOR °
O ¢"“ NASCE

x, (1) = F,e™ sinQt A= ‘ re UNCICLO

LIMITE




A=1, B=1.80

4.5

Space State

A=1, B=2.15

um—

1 stable spiral
node

Space State
4.5

brussellator.nlogo

X=A-(B+D)X + X%
Y =BX - XY
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A=1, B>2:
unstable spiral repellor + 1 limit cycle

Xo=A,Y,=B/A
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0
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Il Teorema di Poincaré-Bendixson

We shall formulate the analysis in answer to two questions: (1) When do
limit cycles occur? and (2) When is a limit cycle stable or unstable? The first
question is answered for a two-dimension state space by the famous Poincaré~

Bendixson Theorem. The theorem can be formulated in the following way:

1. Suppose the long-term motion of a state point in a two-dimensional state space
is limited to some finite-size region; that is, the system doesn’t wander off to
infinity.

2. Suppose that this region (call it R) is such that any trajectory starting within R
stays within R for all time. [R is called an “invariant set” for that system.]

3. Consider a particular trajectory starting in R. The Poincaré-Bendixson
Theorem states that there are only two possibilities for that trajectory:

b. The trajectory approaches a limit cycle as 1 — oo .

{ a. The trajectory approaches a fixed point of the system as ¢ — oo .

a. b.



Il Teorema di Poincaré-Bendixson

A proof of this theorem is beyond the scope of this book. The interested
reader is referred to [Hirsch and Smale, 1974]. We can see, however, that the
results are entirely reasonable if we take into account the No-Intersection Theorem
and the assumption of a bounded region of state space in which the trajectories live.
The reader is urged to draw some pictures of state space trajectories in two
dimensions to see that these two principles guarantee that the only two possibilities
are fixed points and limit cycles.

It is important to note that the Poincaré-Bendixson Theorem works only

| in two dimensions because only in two dimensions does a closed curve |
| separate the space into a region “inside” the curve and a region “outside.”
Thus a trajectory starting inside the limit cycle can never get out and a
trajectory starting outside can never get in. This argument is an excellent
| example of the power of topological arguments in the study of dynamical |
systems. Further, from the Poincaré-Bendixson Theorem we arrive at an
important result: Chaotic trajectories (in a bounded system) cannot occur
in a state space of two dimensions. For systems described by differential
equations, we need at least three state-space dimensions for chaos.




3.16 Poincaré Sections and the Stability of Limit Cycles

We have seen that in state spaces of two (or more) dimensions, a new type of
behavior can arise: motion on a limit cycle. The obvious question is the following:
[s the motion on the limit cycle stable? That is, if we push the system slightly away
from the limit cycle, does it return to the limit cycle (at least asymptotically) or is it
repelled from the limit cycle? As we shall see, both possibilities occur in actual
systems.

You might expect that we would proceed much as we did for nodes and
repellors, by calculating characteristic values involving derivatives of the functions
describing the state space evolution. In principle, one could do this, but Poincaré
showed that an algebraically and conceptually much simpler method suffices. This
method uses what is called a Poincaré section of the limit cycle. The Poincaré
section is closely related to the stroboscopic portraits used in Chapter 1 to discuss
the behavior of the diode circuit.

STABLE LIMIT CYCLE UNSTABLE LIMIT CYCLE




Costruzione della Sezione di Poincaré

For a two-dimensional state space, the Poincaré section is constructed as
follows. In the two-dimensional state space, we draw a line segment that cuts
through the limit cycle as shown in Fig. 3.12 (a). This line can be any line
segment, but in some cases one might wish to choose the X, or X; axes. Let us call
the point at which the limit cycle crosses the line segment going, say, point P.

(a) x2

J.H.Poncaré (1854-1912)

Fig. 3.12. (a) The Poincaré line segment intersects the limit cycle at point P. (b) The four
possibilities for sequences of Poincaré intersection points for trajectories near a limit cycle in
two dimensions.



If we now start a trajectory in the state space at a point that is close to, but not
on, the limit cycle, then that trajectory will cross the Poincaré section line segment
at a point other than P. Let’s call the first crossing point P,. As the trajectory
evolves, it will cross the Poincaré line segment again at points P,, P;, and so on. If
the sequence of points approaches P as time goes on for any starting point in the
neighborhood of the limit cycle, we say that we have an affracting limit cycle or,
equivalently, a stable limit cycle. In other words, the limit cycle is an attractor for
the system. If the sequence of intersection points moves away from P (for any
trajectory starting near the limit cycle), we say we have a repelling limit cycle or,
equivalently, an unstable limit cycle. Another possibility is that the points are
attracted on one side and repelled on the other: In that case we say that we have a
saddle cycle (in analogy with a saddle point). These possibilities are shown

graphically in Fig. 3.12 (b). P
(b) P, P, P,y P, P, P
An example of attracting limit cycle Attracting cycle

Repelling cycle  -0—o—o—¢—0——0—0—

spiral repellor

Saddle cycle —9o—0—¢o—0—o

Py Iy By Py 5 3%

Saddle cycle * o —90-¢ o —o—o

Fig. 3.12. (a) The Poincaré line segment intersects the limit cycle at point P. (b) The four
possibilities for sequences of Poincaré intersection points for trajectories near a limit cycle in
two dimensions.




How do we describe these properties quantitatively? We use what is called a
Poincaré map function (or Poincaré map, for short). The essential idea is that
given a point P), where a trajectory crosses the Poincaré line segment, we can in
principle determine the next crossing point P, by integrating the time-evolution
equations describing the system. So, there must be some mathematical function,
call it F, that relates P to P,: P, = F(P,). (Of course, finding this function F is
equivalent to solving the original set of equations and that may be difficult or
impossible in actual practice.) In general, we may write

P, = F(F) (3.16-1)

In general the function F depends not only on the original equations describing the
system, but on the choice of the Poincaré line segment as well.

To analyze the nature of the limit cycle, we can analyze the nature of the
function F and its derivatives. Two points are important to notice:

1. The Poincaré section reduces the original two-dimensional problem
to a one-dimensional problem.

2. The Poincaré map function states an iterative (finite-size time step)
relation rather than a differential (infinitesimal time step) relation.

—

The last point is important because F gives P,,, in terms of P,. The time
interval between these points is roughly the time to go around the limit cycle once,
a relatively big jump in time. On the other hand, a one-dimensional differential
equation x = f(x) tells us how x changes over an infinitesimal time interval. The
function F is sometimes called an iterated map function (or iterated map, for short).
(Because of the importance of iterated maps in nonlinear dynamics, we shall devote
Chapter 5 to a study of their properties.)




Py

P,

Let us note that the point P on the limit cycle satisfies P = F(P). Any point P°
that satisfies P* = F(P") is called a fixed point of the map function. If a trajectory
crosses the line segment exactly at P, it returns to P on every cycle. In analogy
with our discussion of fixed points for differential equations, we can ask what
happens to a point P, close to P*. In particular, we ask what happens to the distance
between P, and P as the system evolves. Formally, we look at

PPl P I Pz_P- — F(P,)—F(P‘) (3.16-2)

and use a Taylor series expansion about the point P’ to write

pz..P‘=F(P')+d—F (B~-P")+...-F(P") (3.16-3)
dP |,

If we define d; = (P; - P"), we see that

4 -4
dP

d, (3.16-4)

e
We now define the characteristic multiplier M for the Poincaré map:

=L (M>0) (3.16-5)

dP|,

M is also called the Floguet multipler or the Lyapunov multiplier. In terms of M,
we can write Eq. (3.164)

d,=Md, (3.16-6)
We find in general
d,,=M"d, (3.16-7)



d,., =M"d, (3.16-7)

We see that if M < 1, then d; < d,, d; < d,, and so on: The intersection points
approach the fixed point P. In that case the cycle is an attracting limit cycle. If M >
1, then the distances grow with repeated iterations, and the limit cycle is a repelling
cycle. For saddle cycles, M is equal to 1 but the derivative of the map function is
— greater than 1 on one side of the cycle and less than 1 on the other side. However,
based on our discussion of saddle points for one-dimensional state spaces, we
expect that saddle cycles are rare in two-dimensional state spaces. Table 3.4 lists
the possibilities.

—

attracting limit cycle repelling limit cycle
HO<M<1 _ __ IM>1 -~ " ~o

-
75

X,

Table 3.4.
The Possible Limit Cycles and Their Characteristic
Multipliers for Two-Dimensional State Space

Characteristic Multiplier Type of Cycle
M<1 Attracting Cycle
M>1 Repelling Cycle
M=1 Saddle Cycle

(rare in two-dimensions)




We can also define a characteristic exponent associated with the cycle by the
equation

M =¢* (3.16-8)
or
A=In(M) (3.16-9)

The idea is that the characteristic exponent plays the role of the Lyapunov exponent
but the time unit is taken to be the time from one crossing of the Poincaré section to
the next.

Let us summarize: The Poincaré section method allows us to characterize the
possible types of limit cycles and to recognize the kinds of changes that take place
in those limit cycles. However, in most cases, we cannot find the mapping function
F explicitly; therefore, our ability to predict the kinds of limit cycles that occur for a
given system is limited.

attracting limit cycle repelling limit cycle

1;\,<0 ——— A>0 P ™~

—
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Ex.1 ROMEO E GIULIETTA

Il libro di Strogatz suggerisce di studiare, come esercizio, un sistema dinamico lineare a due
dimensioni che descrive, al variare dei parametri, la variazione temporale dell’amore o
dell’odio tra due partner coinvolti in una relazione romantica. '

Definiamo x(t) come I'amore (o l'odio nel caso in cui sia negativo) di Romeo nei 'A
confronti di Giulietta al tempo “t” e y(t) 'amore (o l'odio) di Giulietta nei |
confronti di Romeo. Cosi abbiamo le seguenti due equazioni differenziali del

primo ordine: Romeo X = ax+ by

Giulietta y=cx+dy

“un
a

| parametri e “b” stabiliscono il comportamento di Romeo mentre “c” e “d” quello di
Giulietta; piu precisamente “a” descrive |'attrazione (o repulsione) di Romeo causata dai suoi
stessi sentimenti, mentre “b” l'attrazione causata dai sentimenti di Giulietta. Romeo puo
mostrare 4 comportamenti diversi in base al segno dei parametri “a” e “b”:

Appassionato: a>0; b>0 (Romeo e spinto dai suoi stessi sentimenti cosi come
da quelli di Giulietta)

Narcisistico: a>0; b<O (Romeo e spinto ancora dai suoi sentimenti ma indietreggia a causa dei
sentimenti di Giulietta)

Amanti prudenti: a<0; b>0 (Romeo si tira indietro sui suoi stessi sentimenti ma e incoraggiato
da Giulietta)

Eremita: a<0; b<0 (Romeo si tira indietro sui suoi stessi sentimenti cosi come da Giulietta)

Esercizio:
Esplorare il modello sia analiticamente che con l'aiuto di NetLogo in corrispondenza di diversi
valori dei parametri e cercare di capire quali limitazioni impone la linearita delle equazioni.



Ex.2 LA GLICOLISI

In the fundamental biochemical process called glycolysis, living cells obtain en-
ergy by breaking down sugar. In intact yeast cells as well as in yeast or muscle ex-
tracts, glycolysis can proceed in an oscillatory fashion, with the concentrations of
various intermediates waxing and waning with a period of several minutes. For re-
views, see Chance et al. (1973) or Goldbeter (1980).

A simple model of these oscillations has been proposed by Sel’kov (1968) In
dimensionless form, the equations are

. 2 H H AUP H 4 H
x=—-x+ay+x L K Y =
) g 7 Valori tipici: a=0.08, b=0.6 oN"_/on  ssoonas Q“‘

y=b—ay—x2y H o OH H O

Glucosio Glucosio-6-fosfato

where x and y are the concentrations of ADP (adenosine diphosphate) and F6P
(fructose-6-phosphate), and a,b >0 are kinetic parameters.

.. 12 | i 1 || | ]
Esercizio:
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STUDIES IN NONLINEARITY
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