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Hamiltonian Systems

8.1 Introduction

In our discussions of nonlinear dynamics up to this point, we have dealt only with
dissipative systems. The crucial feature of a dissipative system from the state space
point of view is the “collapse” of a volume of initial conditions in state space. For

most purposes, we can focus our attention on the attractor (or attractors, in general)
in state space-—those “areas” to which trajectories from a range of initial conditions
onuerdi - gre attracted. That is, we need consider only the attractors to understand the long-

* term dynamics of the system.
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Hamiltonian Systems

8.1 Introduction

In our discussions of nonlinear dynamics up to this point, we have dealt only with
dissipative systems. The crucial feature of a dissipative system from the state space
point of view is the “collapse” of a volume of initial conditions in state space. For
most purposes, we can focus our attention on the attractor (or attractors, in general)
in state space—those “areas” to which trajectories from a range of initial conditions
are attracted. That is, we need consider only the attractors to understand the long-
term dynamics of the system.

What happens if the amount of dissipation becomes smaller and smaller? In
.=, that case the system obviously takes longer and longer for trajectories that start
S @M away from the attractor to approach the attractor; it takes longer for a volume of ¢
{ V4 'initial conditions to collapse onto the attractor. In the limit in which there is no 22
WO\ dissipation at all, we would expect that a volume of initial conditions would remain JSaii
SN constant for all time and that there would exist no attractors for the trajectories.
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Systems (or models) with no dissipation are called conservative systems, or
equivalently, Hamilfonian systems. The term conservative means that certain
physical properties of the system (such as the total mechanical energy, the angular
momentum, etc.) remain constant in time. We say that these quantities are
conserved quantities. If the system starts with a certain amount of energy, then that
amount of energy stays the same over time. The name Hamiltonian is applied to
these systems because their time evolution can be described by the so-called
Hamilton’s equations (after Sir William Hamilton, 1805-1865, a noted Scottish
mathematician). We shall discuss these equations in the next section.

Do conservative systems occur in nature? In principle, the answer to this
depends on our “level of description.” Since we know that the total energy of an
isolated system is conserved, though the energy may change form, we might
conclude that Hamiltonian models are the only appropriate models. However, in
practice, this full description is often too complex, and we instead focus our
attention on one particular subsystem; the remaining part of the system acts as a
source or sink of energy (i.e., as a source of dissipation). In that case, a dissipative

model is appropriate. [ ]

William Rowan Hamilton (1805-1865)
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In practice, many real systems are nearly conservative. The most famous
(almost) conservative system is the solar system. In fact, it was a consideration of
the dynamics of the solar system that led Poincaré to introduce many of the
methods already described for dealing with nonlinear dynamics. Over the time
periods of concern, which for the solar system are millions and billions of years, we
can neglect most aspects of dissipation. There are, however, dissipation effects in
the solar system such as tidal forces, which act on planets and moons, and the drag

effects of the “solar wind,” streams of particles emitted by the Sun. For example,
dissipative tidal forces are responsible for the locking of the Moon's rotation rate to K3
its orbital period so that the same side of the Moon always faces the Earth, as | oo
mentioned in Chapter 6. To a high degree of approximation, however, these | "o
dissipative effects can be neglected if we limit ourselves to time periods of a few
million years. Based on these considerations, we can model the dynamics of the HFEEE
solar system with a dissipation-free, conservative (Hamiltonian) model.
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Hamiltonian models are also important in the study of proton beams in high-
energy particle accelerations, in quantum mechanics (more on this in Chapter 12),
and as a branch of applied mathematics, for which there is now a vast literature. In
this chapter, we will describe how chaos appears in Hamiltonian systems, and we
will severely limit the ‘amount of mathematical detail so that we can focus on how
Hamiltonian systems differ from dissipative systems in some respects but are
similar in others. By looking at a model with a variable amount of dissipation, we
shall see how the two types of systems are connected. Most of the important
theoretical results will simply be stated with only a sketch of a plausibility
argument. The goal is to give you an intuitive picture of the rather complex
behavior exhibited by Hamiltonian systems. Once the overall picture is in hand, the
mathematically inclined reader can use the references at the end of the chapter for
more detailed treatments.
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We will first introduce some of the basic notions of Hamiltonian systems
including the state-space description. We will then discuss an important, but
limited, subclass of Hamiltonian systems—those called imtegrable. However,
integrable systems cannot show chaotic behavior; therefore, we must explore what
happens when a Hamiltonian system becomes nonintegrable. The chapter

concludes with a brief description of some applications.




8.2 Hamilton’s Equations and the Hamiltonian

Although we shall not make much direct use of Hamilton’s equations, it will be
helpful to introduce them briefly, both for the following discussion and for the
chance to become familiar with some of the specialized jargon used in the study of
Hamiltonian systems. In the Hamilton formulation of classical (Newtonian)
mechanics, the time evolution of a system is described in terms of a set of
dynamical variables, which give the positions (coordinates) and the momenta of the
particles of the system. Traditionally, the coordinates are indicated with the
symbols g; and the momenta by p, The subscript notation is used to pick out a
particular particle and a particular component of the position vector and momentum
vector for that particle. If the system consists of N point particles, each of which
has three components for its position vector and three components for its
momentum vector, the subscript i will run from 1 to 3N. For example, we might
have g, =(f), and p, =(p,),. Here, g, represents the x component of the
position vector for particle number 1, and p, the corresponding x component of the
particle’s momentum vector. Each pair g,p; corresponds to a “degree-of-freedom”
for the Hamiltonian system. (Recall the discussion in Section 3.2 about different

uses of the term degree-of-freedom.)
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The evolution of the Hamiltonian system is completely described if the time
dependence of the gs and ps is known. That is, if we know g{t) and p{1) for all ¢
and for all i, then we know everything there is to know about the time behavior of
the system. In the Hamilton formulation, the time-dependence of the gs and ps is
determined by solutions of Hamilton’s equations, which are written in terms of the
derivatives of the Hamiltonian function (or just Hamiltonian, for short) H(g,p),
where the unadorned symbols ¢ and p mean that H depends, in general, on all the g,
and p;. For the simplest cases, the Hamiltonian is just the total mechanical energy
(kinetic energy plus potential energy) of the system, written as a function of the gs
and ps. In any case, Hamilton's equations are a set of 2N coupled differential
equations (for a system of N degrees of freedom)

(dg, OH(q,
Hamiltoniana ‘:: = ';Iq p) » q,(2)
H(g,p) — 1, a;{‘ : (8.2-1)
Etot:K(p)_i_U(Q) d; == a:ip i=Ll....N e 4 pi(t)

Exercise 8.2-1. Suppose a single particle with a mass m is constrained to
move along the x axis. Its Hamultonian H = p,lﬂm + U(g,) is the sum of a
kinetic energy term and a potential energy UU. Show that Hamilton’s
equations are equivalent to Newton's Laws of Motion for the system.
Hint: The x component of the force acting on the system is given by F, = —
dUldx, the negative gradient (in the x direction) of the potential energy
function.




Note that Hamilton's equations are similar in form to the standard first-order
differential equations we have been using to describe dynamics in state space for a
variety of systems. The similarity can be made more obvious by identifying the
state space variables x, = g, x; = p|, X3 = g3, and 50 on. For a Hamiltonian system,
the functions (analogous to the f§ in our previous treatment) that give the time
dependence of the state space variables can be written as (partial) derivatives of
some common function, namely, the Hamiltonian. As we shall see in the next
section, that crucial feature embodies the special nature of Hamiltonian systems.
The special linkage between the gs and ps and the partial derivatives of the
Hamiltonian function give Hamiltonian mechanics a special mathematical form
called a symplectic structure, which can be exploited to give elegant proofs of many
features of the time behavior (see, for example, [Goldstein, 1980]).

—
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An important consequence follows from Hamilton’s equations: The value of
the Hamiltonian itself represents a conserved quantity; it does not vary in time. We
prove this by using the chain rule of differentiation:

dH (q, p) E{HH ap; . oH dg, } % (8.2-2)
dt a, i 3q, di

The terms inside the braces of Eq. (8.2-2) tell us how H depends on time because H
depends on the gs and ps and the gs and ps (in general) depend on time. This part
describes the so-called implicit time-dependence of H. The last term in Eq. (8.2-2)
tells us how H depends on time if the time variable appears explicitly in H. Explicit
time dependence occurs if the system is subject to an externally applied time-
dependent force, for example. We will not consider such cases; therefore, we will
assume that the last term is 0.

If we now use Hamilton’s equations (8.2-1) in Eq. (8.2-2), we find for each
term in the sum

da, _ 9H(g.p) f
& o oH{ OH\ OH dH
- =0 8.2-3
dp, __0H(q.p) ﬂp;l dg. ] dg. dp; )
dt dg,

—

So, we see that the time derivative of H is 0 (if H does not depend explicitly on
time). Hence, H represents a conserved quantity. If A represents the total energy
of the system (as it usually does), then we say that the total energy is conserved for
a Hamiltonian system. Alternatively, we say that the total energy is a “constant of
the motion.™




8.3 Phase Space

We again find that a geometric state space description is useful, if not essential, for
understanding how chaos occurs in Hamiltonian systems. State space for a
Hamiltonian system is traditionally called phase space, and the axes of phase space
give the values of the gs and ps. Hence, if we have N degrees of freedom (in the
Hamiltonian sense of that phrase), we have N pairs of ¢s and ps, and the phase
space will have 2N dimensions. Thus, for a Hamiltonian system (with no explicit
time dependence in H), the phase space always has an even number of dimensions.
Even for simple cases we will have difficulty visualizing these multi-dimensional
phase spaces; therefore, we can anticipate using projections and Poincaré sections
to simplify the description.

Sistema Hamiltoniano

=x, = f,(x,,x,) ad 1 grado di liberta
dqg, _dH(q,p) N=1 =X, = f,(x,x,) (.Phase. spacea 2!\l=2\
dt o o, / dimensioni, non si pud
dp.  OH(g.p) _ avere caos)
o : e b,
dr dg, i \ q.l - x,l = (00, 50 Sistema Hamiltoniano
N=2 p=3,= f,(0:%,X5%4) 3 gradi di liberta

512 = 5C3 = f;;(xl,xz,x3,x4) (Phase space a 2N=4

e dimensioni, si puo avere
D, =X, = f,(x,%,,x5,X,)
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Since the Hamiltonian function value (usually the energy of the system) is a
constant of the motion, a trajectory for a Hamiltonian system cannot go just
anywhere in phase space. It can go only to regions of (g, p) space that have the
same energy value as the initial point of the trajectory. Thus, we say that
trajectories in phase space are confined to a 2N — 1 dimensional constant energy
surface. (Of course, this “surface” may be a multidimensional geometric object in

general.)

Esempi:

Sistema Hamiltoniano
ad 1 grado di liberta
(2N=2 dimensioni)

Sistema Hamiltoniano
a 2 gradi di liberta
(2N=4 dimensioni)

La traiettoria € confinata lungo una linea chiusa
1D (toro unidimensionale), luogo dei punti dello
spazio delle fasi ad energia costante

2N-1=1 dim.
e 4
La traiettoria € confinata all'interno
del volume 3D di un toro,
) ipersuperficie ad energia costante
2N-1=3 dim.
—_
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Conservazione del volume nello Spazio delle Fasi

Using techniques similar to those employed for dissipative systems, we can
now show that a volume in phase space occupied by a set of initial conditions
remains the same as the Hamiltonian system evolves. In Chapter 3, we established
that the time-dependence of a small volume V occupied by a set of initial conditions
in state space is given by

1dv df,
—— " —.-—'f- . '1
V di Zﬂx, (B=E

To show that this time derivative is 0 for a Hamiltonian system, we first need
to translate Eq. (8.3-1) into the language of Hamiltonian dynamics. It will be useful
in our proof to identify, as we did earlier, x, with g, x, with the corresponding p;, x;
with g3, x4 with p;, and so on. We also recall that the time dependence of the xs is
given by an equation of the form

j:i - f:(-‘t[ !'-rr'z'l""':l {8'3'2}
If we have 2N dimensions in the phase space, the index i will run from 1 to 2N.

OH e __oH
g, =% = fi(x,.. }_E (8.3-3) b =%=f(x,.) % (8.3-4)

where the last equality in the two previous equations follows from Hamilton’s
equations.



Let us now examine the terms that appear in the sum on the right-hand side of
Eq. (8.3-1). In particular let us look at the first two terms and insert the results of
Eqgs. (8.3-3) and (8.3-4):

V di &0y, E.Il a.'l:; aq| aP. a.p | aql
= 4= = i) = o ?H O'H
h - » (8.3-5)
b= = Syl ) = -5 dgdp, dpdq, y o
=0 — dzvf=0—>-‘;¥= Ié;:O

The final equality of Eq. (8.3-5) follows from the fact that the order of
differentiation does not change the result for these second “cross” partial
derivatives (unless H is an unphysically bizarre function of g and p). cfrTeorema di Schwarz

This cancellation of terms continues pairwise for all the gs and ps. Hence, we
conclude that for a Hamiltonian system, the volume occupied by a set of initial Q
conditions does mot change in time as the system evolves. The practical
consequence of this unchanéing volume is the fact that Hamiltonian systems do not L
have phase space attractors in the way dissipative systems do. As we shall see, this

lack of attractors is both a simplification and a complication. Since we have no
attractors, we do not need to worry about transients; that is, we do not need to let

the trajectory run for some time so that it settles onto the appropriate attractor. This P
usually simplifies the process of finding the appropriate solution for the trajectories. / \
On the other hand, we shall see that the lack of attractors means that trajectories ( ) |
starting with different initial conditions may behave quite differently as time goes \ j !

on, there is no common attractor onto which they settle.



8.4 Constants of the Motion and Integrable Hamiltonians

In Section 8.2, we saw that the energy, represented by the Hamultonian of a system,

is conserved if the Hamiltonian does not depend on time explicitly. Let us flesh out
some of the consequences of that result. If a trajectory in phase space starts at a
point labeled (gg, py), where g and p represent the entire set of 2N phase space
coordinates, the system’s energy is given by H{(go, po). As time goes on, the gs and
ps evolve, but at any later time the energy will have the same value, namely

Hq(1), p(1)) = H(q,, Po) (8.4-1)

where (g(1), p(1)) gives the phase-space trajectory originating from (gq, pp). Hence,
value that “belongs to” that trajectory. Note that the converse statement is not
necessarily true: there may be many different trajectories corresponding to the

same energy value.

H=H(q01p0) \

N
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In some Hamiltonian systems there are additional quantities whose values

also remain constant as the trajectory evolves. Let us see why this is important by
looking at a special case. Suppose one of the ps, say p; does not change in time:

_dH

dg,

(8.4-2)

i

The only way the last term in Eq. (8.4-2) can be 0 for all (g(z), p(1)) values along the
trajectory is to have H(g, p) not depend on g; at all! We have the general rule: The
momentum p; is a constant of the motion if, and only if, the Hamiltonian for a
system does not depend on the corresponding g; explicitly.




15; =)= -%f. —_ Pi=Pp Yt Costante del Moto!

: In that case, a trajectory
can be labeled by its value of p; = py as well as by its energy value H(gq. po). When
this occurs, the trajectories are limited not only to those regions of phase space
associated with a particular energy value, they are also constrained by the value of
p;. Thus, the trajectories must “live” on a 2N-k dimensional “surface™ in phase
space, where k is the number of conserved quantities.

For a special (and very limited, but theoretically important) class of
Hamiltonian systems, there are as many constants of the motion as there are

degrees of freedom. Such systems are called infegrable, for reasons that will
shortly become obvious. However, in most cases, the constants of the motion are
not the ps in terms of which we initially wrote the Hamiltonian. The constants of
the motion, however, can always be expressed as functions of the original gs and
ps. The constants of the motion are usually called the action variables and are
commonly written as J{q, p), i=1,2,...,N. For an integrable Hamiltonian
system, the phase space trajectories are confined to an N-dimensional surface in
phase space.

P
Esempio di sistema integrabile: K\ ,
N=1: 2D phase space e 1D energy surface f\

N




Associated with each J{qg, p) is another variable labeled 6,(gq, p). This new
variable is called the corresponding angle variable. (In an upcoming example, we
shall see why these names are used.) The J;s and 6,s are chosen so that Hamilton’s
equations, expressed in terms of the Jis and 6,s have the same mathematical form
as the original Hamilton's equations expressed in terms of the gs and ps:

Trasformazioni Canoniche "1 BH{E D
B = e B L
0.(¢) = F(q., p. i
(D)= F(q,,p,) B aJ, _—_—
J(0)=G(g,p) j - _9H@®.J)
: L)

—

(Since the angle variable is dimensionless, we see that the action has units of energy
multiplied by time, or equivalently, momentum multiplied by distance). If Egs.
(8.4-3) are satisfied, we say that the variables (8,J) are related to the variables (g,
p) by a canonical transformation.

As we shall see, for a periodic trajectory in phase space, for which the
trajectory forms a closed curve, the action has a nice geometric interpretation: The
action associated with a periodic trajectm-y is proportional to the phase space area
enclosed by the trajectory.

azione maggiore \/\
/(/j a
azione minore




Caso Speciale: variabili azione-angolo per un sistema integrabile

~—

. _OH(@,J)
6 =
A7 %
j = _aH(G.J)
‘ 26,

The special case we are interested in is a canonical transformation that leads
to a Hamiltonian that depends only on the J;s and not on the 6,s. In that case, for
alli=1,2,..., N, we have

J,=0 (8.4-4)

and the Js are the N constants of the motion.

A Hamiltonian system that satisfies Eqs. (8.4-3) and (8.4-4) is called
(somewhat unfortunately) an integrable system. The term integrable comes from
the notion that the action J; can be expressed as an integral over the motion of the
system and that the corresponding equation for 6; can be easily integrated.

Nota: The term integrable is a bit misleading because it seems to imply that the
character of the system depends on our ability to find the approprate
canonical transformation or to do the required integral. In fact, one often
finds phrases in the literature such as “A system is integrable, if we can
find the canonical transformation . . . In reality, the character of the
system, that is the number of constants of the motion, is independent of
our ability to find the appropriate canonical transformation.




Sistemi Integrabili

By expressing the desired canonical transformation in terms of a so-called
Birkhoff Series and by examining the convergence properties of that series, one
can determine (at least in principle) whether a given Hamiltonian system is
integrable or nonintegrable (HEL80). If the system is nonintegrable, it has fewer
constants of the motion than degrees of freedom.

We will now list (without proof) some results, which tell us what kinds of
Hamiltonian systems are integrable (HEL.80).

1. All one-degree-of-freedom Hamiltonian systems, for which
H is an infinitely differentiable (that is, “analytic™) function
of g and p, are integrable and the corresponding action J
satisfies H= @ J, where @ =0H [dJ] .

2. All Hamiltonian systems for which Hamilton’s equations

are linear in g and p are integrable (via the so-called normal
maode transformations).

3. All Hamiltonian systems with nonlinear Hamilton’s

equations that can be separated into uncoupled one-degree-
of-freedom systems are integrable.




Let us now explore the consequences of having an integrable Hamiltonian, for
which all the J;s are constants of the motion. In this case, the time dependence of
@, is easy to find

(J, =0) 6, =—=w(J) (8.4-5)

The right-hand side of the previous equation defines what is called the angular
frequency of the motion. For an integrable system, @, depends on the values of all
the J:s, but because the Js are independent of time, the @, s are also independent of

time. Thus, we can immediately wrile
6.(t)=w,1+06,(0) (8.4-6)

Hence, we see that if the system is integrable and if we can find the canonical
transformations that give us Egs. (8.4-3) and (8.4-4), then, amazingly, we have
completely solved the dynamics of the system.

If we want to find the behavior of the system in terms of the original ps and
gs, we can use the inverse of the canonical transformations to write

1) = B!J]

g;( S (8.4-7)
p;(1)=g(0,J)

For a system that is bounded spatially, the gs and ps must be periodic functions of

the 8, s since, according to Eq. (8.4-6), 6,(r) increases without limit as 1 — == .




Flussi Hamiltoniani
ad un grado di liberta




We will now study two examples of om-degr-e&of-freedom Hamiltonian
systems and their phase space behavior.

The Simple Harmonic Oscillator

In Exercise 8.2-2, we learned that the Hamiltonian for a one-dimensional simple
harmonic oscillator with mass m and spring constant k is

2
H(q,p) = £—+1kg* (8.4-8)
2m
where ¢ is the displacement of the oscillator from its equilibrium position. In this

case, the numerical value of the Hamiltonian is the total mechanical energy of the
system.

(c) -



We will now stuc]y two cxam;iks of om-degr-eo-of-freedom Hamiltonian

systems and their phase space behavior.

The Simple Harmonic Oscillator

In Exercise 8.2-2, we learned that the Hamiltonian for a one-dimensional simple
harmonic oscillator with mass m and spring constant k is

2
H(g,p)=2—+1kq’ (8.4-8)
2m
where g is the displacement of the oscillator from its equilibrium position. In this
Case, the numerical value of the Hamiltonian is the total mechanical energy of the
system. The corresponding Hamilton's equations for the time evolution are

—q_ﬂH p
Hamilton’s = dp _m
Equations 7] oOH (8.4-9)
P=-¥=-k¢i

The one (spatial} dimension simple harmonic oscillator model has one degree
of freedom and its phase space is two-dimensional. Since the Hamiltonian is
independent of time, the phase space trajectories must reside on a 2N-1 = 1
dimensional “surface™ (i.e., on a curve). The trajectories are closed curves because
the motion is periodic. Each value of the energy is associated with a unique closed
curve.
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Spazio delle Fasi 2D dell’Oscillatore Armonico

The phase space trajectories for the simple harmonic oscillator are ellipses
with a larger ellipse associated with a larger value of the energy (Hamiltonian) of
the system. If the phase space coordinates are suitably rescaled, as shown on the
right in Fig. 8.1, then the trajectories become circles. As we shall see, the radius of
each circle is equal to the square root of the value of the action associated with that
trajectory. The corresponding angle variable gives the location of the trajectory

point on the circle.
— 2 2
@:a_Hz.E. i 2ty
dp m
oH

R i\
g \\/ q

i0=20=—"q0)

q(t) = Acos(wt + 6,)

p(t) = mq(t) = —mwAsin(wt + 6,)
Fig. 8.1. On the left is a phase space trajectory for the simple harmonic oscillator. Each

ellipse is associated with a particular value of the energy. A larger ellipse has a larger value
{:-fthem%y. By rescaling the variables, the trajectories become circles whose radii are
equal to VJ, the square root of the action value associated with that trajectory. The

carresponding angle variable 8 locates the point on the trajectory.
Legge di Hooke




Spazio delle Fasi 2D dell’Oscillatore Armonico

The phase space trajectories for the simple harmonic oscillator are ellipses
with a larger ellipse associated with a larger value of the energy (Hamiltonian) of
the system. If the phase space coordinates are suitably rescaled, as shown on the
right in Fig. 8.1, then the trajectories become circles. As we shall see, the radius of
each circle is equal to the square root of the value of the action associated with that
trajectory. The corresponding angle variable gives the location of the trajectory
point on the circle.

r

p z? 2 P p'(t)= JJ sin e(r)
Y ub a? b q'(1)=~/7 cos6(z)
m
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p(t) = mq(t) = —mwAsin(wt + 6,)
Fig. 8.1. On the left is a phase space trajectory for the simple harmonic oscillator. Each

ellipse is associated with a particular value of the energy. A larger ellipse has a larger value
i::-fthem%y. By rescaling the variables, the trajectories become circles whose radii are
equal to VJ, the square root of the action value associated with that trajectory. The

carresponding angle variable 8 locates the point on the trajectory.
Legge di Hooke
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6, =

J,=0

For the simple harmonic oscillator, we know that the angular frequency of the
oscillatory motion is given by w = m . Since this is a one-degree-of-freedom
system or since Hamilton’s equations are linear, we expect that this system is
integrable. The one constant of the motion is the Hamiltonian (energy) or some
multiple thereof. Hence, we can write the action J as

oH

—
—— =

aJ, e

*

JH

q:-n—-

P
d

dg

Y
m

p=-5—=-k

=

=

2 2
HewJ e J=T -2 &
w 2mow 2@
k
m
p| < v p’

1d

rescaling

]
0

the variables... m

(8.4-10)

p'(t)=+/J sin6(r)
q'(t) =7 cos6(r)

q

NZ&

Fig. 8.1. On the left is a phase space trajectory for the simple harmonic oscillator. Each
ellipse is associated with a particular value of the energy. A larger ellipse has a larger value
By rescaling the variables, the trajectories become circles whose radii are

nfﬂwu%y.
equal to VJ, the square root of the action value associated with that trajectory.

carresponding angle variable 8 locates the point on the trajectory.

The



For the simple harmonic oscillator, we know that the angular frequency of the
oscillatory motion is given by @ = \Jk/m . Since this is a one-degree-of-freedom
system or since Hamilton’s equations are linear, we expect that this system is

integrable. The one constant of the motion is the Hamiltonian (energy) or some
multiple thereof. Hence, we can write the action J as

2 2
HewJ —s y=H__P kg (8.4-10)
@ 2mw 2o

If we use p/«.l'lmm and q.,(mwﬂ as the phase space variables, then the
trajectories will be circles with radii equal to vJ . To complete the story, we can

write the original phase space variables p and g in terms of the action-angle
variables (with 8 positive going counterclockwise from the positive g axis):

(8.4-11)

INID=0t+000) [ p(t) = 2marJ sin6(t) INAUE JJ sin6(r)
y r g(t) =20 | (mw)cosO(t) | q'(t) =/ cosO(t)

As Exercise 8.4-1 shows, the action associated with a closed trajectory is
related to the phase space area enclosed by the trajectory. In general, we may write

1

J=— 4-1
2= p dq (8.4-12)

(R -

where the symbol 45 means that the integral is taken around the closed path of the
trajectory.



Studio dei punti fissi dell’Oscillatore Armonico non smorzato e smorzato

NOTA: Si noti che la struttura delle equazioni di Hamilton ci permette di applicare anche ai sistemi Hamiltoniani la

procedura introdotta nei sistemi dissipativi per trovare e studiare i punti fissi, con la differenza che qui i punti fissi
non saranno piu attrattori della dinamica.

Note that the simple harmonic oscillator model has only one fixed point,
namely (p =0, g = 0). In the language of Hamiltonian dynamics this kind of fixed
point is called an elliptic point because the trajectories near the fixed point are
ellipses.

3 JdH P - origine = punto fisso ellittico
dp m
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Ex.1 ROMEO E GIULIETTA

Il libro di Strogatz suggerisce di studiare, come esercizio, un sistema dinamico lineare a due
dimensioni che descrive, al variare dei parametri, la variazione temporale dell’lamore o

dell’'odio tra due partner coinvolti in una relazione romantica.

Definiamo x(t) come I'amore (o I'odio nel caso in cui sia negativo) di Romeo nei |
confronti di Giulietta al tempo “t” e y(t) 'amore (o l'odio) di Giulietta nei
confronti di Romeo. Cosi abbiamo le seguenti due equazioni differenziali del

primo ordine:

Sistema Lineare

Romeo Xx=ax+by
Giulietta y=cx+dy

|

(Y

Lo Jacobiano coincide con Ia
matrice dei coefficienti e quindi
descrive il comportamento del
sistema anche a distanze maggiori
dal punto fisso (non richiede alcuna
espansione in serie di Taylor).

Quando il determinante della matrice dei coefficienti e

diverso da zero, il sistema ha esattamente un unico

ax+by= . \ . .
punto fisso, che pu0 essere trovato risolvendo il

. sistema di equazioni lineari. In questo caso il punto
C‘x+dy =0 fisso si trova all'origine (0,0) poiché non ci sono

termini costanti nelle equazioni (sistema omogeneo).

Nei sistemi dinamici lineari non possono emergere cicli limite. | cicli limite sono
una caratteristica dei sistemi dinamici non lineari. Un sistema lineare puo avere
un comportamento periodico, come nel caso di un oscillatore armonico ideale
senza attrito (quindi conservativo), ma questo comportamento non rappresenta
un ciclo limite bensi un’orbita ad energia costante: in questo caso la traccia dello
Jacobiano sara zero e il punto fisso sara un punto ellittico. Se invece la traccia e
maggiore di zero, il sistema torna ad essere dissipativo e il punto fisso puo
essere un nodo standard o un nodo a spirale a seconda del segno del radicando
nell’equazione caratteristica.
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