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Null hypothesis 

The relations between nodes can be 
inferred from the topology, i.e. 

      Real 
communities =  Topological 

communities 



Questions 

•  What is a community? 

•  What is a partition? 

•  What is a “good” partition?  



Communities: definition 

•  Local criteria 

•  Global criteria 

•  Vertex similarity 



Local definitions:  
self-referring 

“Look at the subgraph, forget 
the rest of the network.” 

Ex. Clique! 

n-cliques, k-plexes, etc. 



Local definitions: 
comparative 

“Compare links inside and outside of the 
subgraph” 

1) “Strong definition”: LS set 

2) “Weak definition”: internal degree  
is larger than external degree. 



Global definitions 

Looking at the community with respect  
to the whole graph 

Null model: graph with no community  
structure 

Ex. Newman-Girvan null model: a random  
graph with the same degree sequence of  
the original graph 



Definitions based on 
vertex similarity 

Vertices are in the same community if 
they are “similar” to each other 

Similarity measure can be local or global 

Ex. Distance between vertices, eigenvector 
components, structural equivalence, etc. 



Warning 

Communities are usually implicitly defined 
by the specific algorithm adopted, without  
an explicit definition! 

The practical definition may depend on the 
specific system/application 



What is a partition? 

“A partition is a subdivision of a graph  
in groups of vertices, such that each 
vertex is assigned to one group” 

Problems: 
1)  Overlapping communities 
2)  Hierarchical structure 



Overlapping communities 

In real networks, 
vertices may belong 
to different modules   

G. Palla, I. Derényi, I. Farkas, T. Vicsek, 
Nature 435, 814, 2005 



Hierarchies 

Modules may embed 
smaller modules, 
yielding different 
organizational levels 

A. Clauset, C. Moore, M.E.J. Newman,  
LNCS 4503, 1, 2007 



What is a “good” partition? 



How can we compare different  
partitions? 

?



Partition P1 versus P2: which one is 
better?  

Quality function Q 

Is Q(P1) > Q(P2) or Q(P1) < Q(P2) ? 



Modularity 

 = # links in module i  

= expected # of links in module i 

€ 

li



probability that a stub,  
randomly selected, ends in  
module i      

= 



probability that the link 
is internal to module i  

expected number  of links in 
module i 



History 

•  1970s: Graph partitioning in 
computer science 

•  Hierarchical clustering in social 
sciences 

•  2002: Girvan and Newman, PNAS 99, 
7821-7826 

•  2002-onward: methods of “new 
generation”, mostly by physicists  



Graph partitioning 

“Divide a graph in n parts, such that the 
number of links between them (cut size) 
is minimal” 

Problems: 

1.  Number of clusters must be specified 
2.  Size of the clusters must be specified 



If cluster sizes are not specified, the 
minimal cut size is zero, for a partition 
where all nodes stay in a single cluster 
and the other clusters are “empty” 

Bipartition: divide a graph in two clusters 
of equal size and minimal cut size 



Spectral partitioning 

Laplacian matrix L 



Spectral properties of L: 

•  All eigenvalues are non-negative 
•  If the graph is divided in g 
components, there are g zero 
eigenvalues 
•  In this case L can be rewritten in a 
block-diagonal form 



If the network is connected, but there 
are two groups of nodes weakly linked  
to each other, they can be identified from 
the eigenvector of the second smallest  
eigenvalue (Fiedler vector)  

The Fiedler vector has both positive and 
negative components, their sum must be 0 

If one wants a split into n1 and n2=n-n1  
nodes, one takes the n1 largest (smallest) 
components of the Fiedler vector  



Kernighan-Lin algorithm 

Start: split in two groups 

At each step, a pair of nodes of different 
groups are swapped so to decrease the cut  
size 

Sometimes swaps are allowed that  
increase the cut size, to avoid local 
minima  



Hierarchical clustering 

Very common in social network analysis 

1.  A criterion is introduced to compare  
nodes based on their similarity 
2. A similarity matrix X is constructed: 
the similarity of nodes i and j is Xij 
3. Starting from the individual nodes, larger 
groups are built by joining groups of nodes  
based on their similarity 



Final result: a hierarchy of partitions  
(dendrogram) 



Problems of traditional 
methods 
•  Graph partitioning: one needs to 

specify the number and the size of 
the clusters  

•  Hierarchical clustering: many 
partitions recovered, which one is 
the best? 

One would like a method that can predict 
the number and the size of the partition 
and indicate a subset of “good” 
partitions 



Girvan-Newman algorithm 

M. Girvan & M.E.J Newman,  
PNAS 99, 7821-7826 (2002) 

Divisive method: one removes the links 
that connect the clusters, until the latter 
are isolated 

How to identify intercommunity links?  
Betweenness 



Link-betweenness: number of shortest 
paths crossing a link 



Steps 

1.  Calculate the betweenness of all 
links 

2.  Remove the one with highest 
betweenness 

3.  Recalculate the betweenness of 
the remaining edges 

4.  Repeat from 2 



The process delivers a hierarchy of  
partitions: which one is the best? 

The best partition is the one corresponding 
to the highest modularity Q 

M.E.J. Newman & M. Girvan, Phys. Rev. E 
69, 026113 (2004) 

The algorithm runs in a time O(n3) on a 
sparse graph (i.e. when m ~ n) 



New methods 

• Divisive algorithms 

• Modularity optimization 

• Spectral methods 

• Dynamics methods 

• Clique percolation 



Divisive algorithms 

Based on link removal (like GN) 

Ex. Algorithm by Radicchi et al.               
(PNAS 101, 2658-2663, 2004)  

Edge clustering:  



Main idea: inter-community links have  
low edge clustering coefficient 



Steps 

1.  Calculate the edge clustering of all 
links 

2.  Remove the one with lowest edge 
clustering 

3.  Recalculate the measure for the 
remaining edges 

4.  Repeat from 2 

Advantage over GN: fast! The CPU time 
scales as O(n2) on a sparse graph 



Modularity optimization 

1)  Greedy algorithms 
2)  Simulated annealing 
3)  Extremal optimization 

Goal: find the 
maximum of Q over 
all possible network 
partitions 

Problem: NP-complete! 



Greedy algorithm 

•  Start: partition with one node in 
each community 

•  Merge groups of nodes so to obtain 
the highest increase of Q 

•  Continue until all nodes are in the 
same community 

•  Pick the partition with largest 
modularity 

M.E.J. Newman,  
Phys. Rev. E 69, 066133, 2004 

CPU time O(n2) 



Resolution limit of modularity 



? 

S.F. & M. Barthélemy, PNAS 104, 36 (2007) 



Spectral methods 

Finding communities from spectral  
properties of graph matrices: A, L, 
etc. 
Ex. Algorithm by Donetti & Muñoz 
(JSTAT, P10012, 2004) 

The first few eigenvectors of the Laplacian 
are computed 

Eigenvector components act like  
coordinates to represent nodes in space  



Nodes are then grouped with 
hierarchical clustering 



Dynamic algorithms 

• Potts model 

• Synchronization 

• Random walks 



Clique percolation 

G. Palla, I. Derényi, I. Farkas, T. Vicsek, 
Nature 435, 814, 2005 



Communities in 
weighted networks 

Aij = Wij 

Most methods based on topology fail 

Some methods can be easily adapted 

Sparsity may not be  crucial! 



Weighted modularity 

 = sum of weights of links in module i             
    (strength of module i) 

= expected strength of module i 



Markov Cluster Algorithm 

S. Van Dongen, PhD thesis (2000) 

Basic idea: diffusion flow on a network 

Wij  Sij 

Sij is the stochastic matrix: 

Sij=Wij/si 



Steps: 

1.  (Diffusion) Raise the stochastic 
matrix to the power p (e.g. p=2) 

2.  (Inflation) Raise each resulting 
matrix element to the power α 

3.  Normalize the elements of the 
resulting matrix (by row) 

4.  Keep only the k largest elements 
per column 

5.  Repeat from 1.  

Three parameters: p, α, k 



http://www.micans.org/mcl/ 

After a sufficient number of iterations 
the matrix converges to a matrix with 0s 
and 1s, with disconnected components! 

Problem: the final configuration depends  
on the parameters p and (mostly!) α  

Complexity: O(nk2) 



Matrix ordering 

Goal: to put a matrix in block-diagonal 
form! 



Cost function optimization 

Quadratic assignment problem,  
NP complete! 

Standard optimization techniques, e.g. 
simulated annealing 

M. Sales-Pardo, R. Guimerà, A.A. Moreira, 
L.A.N. Amaral, PNAS 104, 15224 (2007)  



K-clustering 

Set of data points, distance d(x,y) for 
each pair of points x,y  

Goal: dividing the points in k groups 
such to maximize/minimize a given 
measure 

Problem: number of clusters given  
as input! 



Minimum k-clustering : minimizing the “diameter”  
of a cluster, i.e. the largest distance between  
points of the cluster  

k-clustering sum : minimizing the average 
intracluster distance  

k-center : minimizing the maximum distance of  
cluster points from a “centroid”  

k-median : minimizing the average distance of  
cluster points from a “centroid”  

k-means : minimizing the average squared 
distance of cluster points from an arbitrary 
“centroid” point  



Example: k-means clustering 

1.  k points are randomly chosen, as far as 
possible from each other (“centroids”) 

2.  Each data point is assigned to the nearest 
centroid 

3.  Recalculate positions of centroids by 
determining the centers of mass of the k 
clusters 

4.  Repeat from 2.  

Points embedded in metric space 

Problem: result sensitive to initial conditions! 



Testing algorithm 

• Artificial networks 

• Real networks with known 
community structure 



Benchmark of Girvan & 
Newman 



Problems 

•  All nodes have the same degree 

•  All communities have equal size 

In real networks the distributions of degree  
and community size is highly heterogeneous! 



New benchmark (A. Lancichinetti, S. 
F., F. Radicchi, PRE 78, 046110, 2008) 

•  Power law distribution of degree 

•  Power law distribution of community size 

•  A mixing parameter μsets the ratio 
between the external and the total degree 
of each node 







Real networks 



Outlook 

•  Overlapping communities 

•  Hierarchies 

•  Testing 

•  Computational complexity 

•  Clustering in dense correlation matrices 
(i.e. neither sparse nor complete) 

A long way to go … more questions than 
answers from clustering 

More rigorous definition of the problem! 



S. F., C. Castellano, arXiv:0712.2716 


