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The problem: Finding Community 
Structures in Complex Networks

An important open problem in complex networks analysis is the 
identification of modular structures.

Distinct modular structures,
usually called Communities,
can loosely be defined as 
subset of nodes (vertices) 
which are more densely 
linked, when compared to 
the rest of the network.
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The problem: Finding Community 
Structures in Complex Networks

In a limiting case, communities can be also defined as non-
connected clusters of interconnected nodes:  
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A useful set of techniques for the detection of community structures was 
firstly developed in social network analysis and is known as

HIERARCHICAL CLUSTERING METHODS.

These techniques are aimed at discovering natural divisions of networks
into groups, based on various metric of similarity or strength of connection
between vertices.

They fall into two broad classes: agglomerative and divisive methods, 
depending on whether they focus on the addition or the removal of edges 
to or from the network…

Communities, of course, are fundamental in social networks (parties, 
cultures, elites), but are also very important in biochemical, metabolic or 
neural networks (functional groups), in the world wide web (thematic 
pages), in economic networks, food webs, computer clusters and so on…
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Divisive methods progressively remove the edges of the networks in terms 
of their importance:

By doing this repeatedly, and 
recalculating the betweenness
at each step, the network 
breaks iteratively into smaller 
and smaller groups of nodes…

…until it breaks into a 
collection of single non-
connected nodes...

- in connecting many pairs of nodes (shortest-path edge betweenness, i.e. the 
number of shortest paths which are making use of a given edge)

M.E.J.Newman and M.Girvan, 2004 Phys. Rev. E 69 026113

- in propagating some information over the network (information centrality)
S.Fortunato, V.Latora, M.Marchiori, 2004 Phys. Rev. E 70 056104

- other quantities...



Clearly we need some parameter to quantify the reliability of each 
communities configuration…

But which subdivision level does give the best 
communities configuration for a given network?

The divisive algorithm produces a hierarchy of subdivisions of the network in 
isolated groups of interconnected nodes (communities)...

...



*M.E.J.Newman and M.Girvan, 2004 Phys. Rev. E 69 026113

This parameter is the “modularity” Q *, a quantity that, at each step, 
compares the fraction of intra-community edges with the expected value of 
the same quantity in an equivalent network with random connections, and 
allows us to test which communities configuration found by the divisive 
algorithm is the best one:
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fraction of edges that connect 
vertices in community i for a 
random network

nc is the number of communities

Usually 0.3 < Q < 0.7

fraction of edges that 
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fraction of total edges connected to 
a node in community-i



Modularity in “ad hoc” random trial networks 
(N=128, <k>=16, 4 communities)

zout
(average number of inter-community 

edges per node)

zout = 2
Q ~ 0.7



Modularity in “ad hoc” random trial networks 
(N=128, <k>=16, 4 communities)

zout = 4
Q ~ 0.6



Modularity in “ad hoc” random trial networks 
(N=128, <k>=16, 4 communities)

zout = 6
Q ~ 0.5



Modularity Q
Zachary’s Karate Club  
friendships network

M.E.J.Newman and M.Girvan, 2004 Phys. Rev. E 69 026113
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Girvan Newman 
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real real 
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structurestructure

Community 1   (16 Community 1   (16 nodesnodes) ) Community 2   (18 Community 2   (18 nodesnodes))

W.Zachary (1977) J.Anthropol.Res. 33 452-473



DIFFERENT APPROACH: 
Synchronization of Dynamical 

Oscillators in Weighted Networks

Topological Divisive Algorithms like GN have the 
problem of recalculating betweennesses at each step.

Since a single-step calculus of all the edge-betweennesses  
takes O(N2) operations, and the whole process takes N 

steps, these algorithms are quite slow – O(N3) –



The Kuramoto model*

Through  r   the rate equations can be rewritten as: 
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The simplest models for synchronization available on the 
market is the celebrate Kuramoto model and consists of 
N fully connected phase oscillators with natural
frequencies and coupling parameter  K:

The coherence of the system is measured by
the mean field order parameter r ( ):0 ( ) 1r t≤ ≤ 1
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The Kuramoto model (2)
As Kuramoto showed analitically in a beautiful analysis, 
one observes synchronization above a certain critical
value of the control parameter Kc …

0 ( ) (0) 0i i iK t t rϑ ω ϑ→ ≈ + → Incoherent phase
( ) ( ) 1iK t t rϑ ψ→ ∞ ≈ → Global synchronization

Global syncronization
phase syncronization  (phase locking)

frequency syncronization (frequency locking)



The Kuramoto model (3)



THE MASTER STABILITY FUNCTION APPROACH 
TO ENHANCE SYNCHRONIZATION IN COMPLEX NETWORKS

*M.Chavez, D.U.Hwang, A.Amann, H.G.E.Hentschel and S.Boccaletti, Phys. Rev. Lett. 94 218701 (2005)
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Suppose to have a (unweighted, undirected) network of N linearly coupled 
identical oscillators*. The equation of motion reads:

If G has a real spectrum of eigenvalues λi (for symmetric coupling) and if 
we associate λ1 to the state xs(t), the stability of the synchronous manifold
(xi(t)=xs(t),  i) requires that all the conditional Lyapunov exponents L
associated with λ2≤…≤ λi ≤…≤ λN would be negative...

∀



THE MASTER STABILITY FUNCTION APPROACH 
TO ENHANCE SYNCHRONIZATION IN COMPLEX NETWORKS 

(2)

*M.Chavez, D.U.Hwang, A.Amann, H.G.E.Hentschel and S.Boccaletti, Phys. Rev. Lett. 94 218701 (2005)
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Defining the Master Stability Function (MSF) as the largest Lyapunov
exponent Lmax versus a parameter n=sl, it can be shown* that, for a 
large class of dynamical systems, the MSF is negative in a finite 
parameter interval (n1, n2). 

Thus the condition for synchronization stability is governed by the ratio 
lN/l2:the more packed the eigenvalues of G are, the higher is the chance 
of having all Lyapunov exponents into the stability range for some s.



** A.Pluchino., M.Ivanchenko, V.Latora, A.Rapisarda and S.Boccaletti, in preparation
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where a is a real tunable parameter and Ki is the set of neighbors of the ith node.

*M.Chavez, D.U.Hwang, A.Amann, H.G.E.Hentschel and S.Boccaletti, Phys. Rev. Lett. 94 218701 (2005)

1)   to find the best synchronization condition of a given network*

One can use the master stability function approach: 

2)   to tune the synchronization of a network in order to identify community 
structures** (DYNAMICAL CLUSTERING)

Both the results can be realized with an opportune choice of 
the coupling matrix Gij in the network equation, by means of a 
weighting procedure that assignes to each edge a ‘load’ lij
equal to its betweenness (i.e. the number of shortest paths 
that are making use of that edge):

couplingcoupling matrixmatrix G=GG=G((aa))

master stability function arguments apply
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Most common dynamical systems defined over the network



M.Chavez, D.U.Hwang, A.Amann, H.G.E.Hentschel and S.Boccaletti, Phys. Rev. Lett. 94 218701 (2005)

1. Finding the best synchronization condition 
for a network of Rössler oscillators

( ) [ ] 1,...,
i

i

i i ij i j
j Kij

j K

x F x l H x x i N
l

α
α

σ
∈

∈

= − − =∑∑
G GG G G G� �

Scale Scale freefree networksnetworks RandomRandom networksnetworks



2. Tuning the synchronization of a network of oscillators 
for finding community structures
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0: (0) 0t α= ∼ The system starts from a state with The system starts from a state with perfectly synchronizedperfectly synchronized frequencies frequencies 
for a given value of the coupling strenght.;for a given value of the coupling strenght.;

2.

0: ( )t tα> →−∞ Decreasing Decreasing αα, the , the edgesedges withwith the greatestthe greatest betweennessbetweenness are are weightedweighted
lessless and and less less andand the oscillators progressivelythe oscillators progressively desynchronize;desynchronize;3.

1. At variance with the topological methods we calculate the At variance with the topological methods we calculate the edge betweennessesedge betweennesses (i.e. the edge(i.e. the edge’’s s 
loads  loads  ll i j i j ) of the network ) of the network only one timeonly one time before starting the simulation;before starting the simulation;

4. We look to clusters of nodes oscillating with a We look to clusters of nodes oscillating with a common frequencycommon frequency (communities) and we select the (communities) and we select the 
clusters configuration with the clusters configuration with the highest modularity Qhighest modularity Q..

DYNAMICAL CLUSTERING ALGORITHMS
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ChaoticChaotic RRöösslerssler identicalidentical 3D 3D oscillatorsoscillators

A.Pluchino, V.Latora, A.Rapisarda and S.Boccaletti, in preparation
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In this case the two 
main communities of 

Zachary’s network have 
been correctly

recognized

16 nodes

18 nodes



sin( ) 1,...,
i

i

i i ij j i
j Kij

j K

K l i N
l

α
αϑ ω θ θ

∈
∈

= + − =∑∑
�

KuramotoKuramoto’’s non s non identicalidentical 1D 1D oscillatorsoscillators

A.Pluchino, V.Latora, A.Rapisarda and S.Boccaletti, in preparation

( )
inf

1

1
i

N
j t

i t

r e
N

ϑ

= →∞

= ∑

0α=



sin( ) 1,...,
i

i

i i ij j i
j Kij

j K

K l i N
l

α
αϑ ω θ θ

∈
∈

= + − =∑∑
�

KuramotoKuramoto’’s non s non identicalidentical 1D 1D oscillatorsoscillators

A.Pluchino, V.Latora, A.Rapisarda and S.Boccaletti, in preparation

The two main communities of 
Zachary’s network have been 

correctly recognized 

16 nodes

18 nodes



But the results of sensitivity tests on 
trial network with a known community 
structure were not so excellent.....



The Opinion Changing Rate (OCR) model*

It is a modification of the Kuramoto model and consists of 
the following rate equations describing the opinions 
evolution of N fully interacting agents:
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*A.Pluchino, V.Latora, A.Rapisarda, Int.Journ.of Mod.Phys. C 16 515 (2005)
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*A.Pluchino, V.Latora, A.Rapisarda, Int.Journ.of Mod.Phys. C 16 515 (2005)

The Opinion Changing Rate (OCR) model*

Phase transition for the asymptotic
order parameter Rinf at σC~1.4
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The Opinion Changing Rate (OCR) model*



Here we further modified the standard 
OCR model forcing the oscillators natural 
frequencies to follow the so called  
Heigselmann-Krause dynamics...
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The Hegselmann-Krause (HK) opinion dynamics* is based on the presence
of a parameter e, called “confidence bound”, which expresses the range of 
compatibility of opinions of agents put on a network (real space).

Heigselmann-Krause Dynamics

The 1-D opinion space is represented by the points of a [0,1] line, where 
the opinions are randomly distributed: 

0 1

At each step, one chooses at random one opinion and checks how
many opinions, belonging to first neighbours agents on the network, are
compatible with him, i.e. are inside the confidence bound…
…at the next step, the agent takes the average opinion of its
compatible neighbours...

confidenceconfidence boundbounde

*R. Hegselmann and U. Krause, Journal of Articial Societies and Social Simulation 5,
issue 3, paper 2 (jasss.soc.surrey.ac.uk) (2002);



ClustersClusters fusionfusion and and ConvergenceConvergence timetime factionfaction 11 factionfaction 22

connectorsconnectors

Time Time evolutionevolution aboveabove the the consensusconsensus thresholdthreshold

eC

S.Fortunato, V.Latora, A.Pluchino, A.Rapisarda, 
“Vector Opinion Dynamics in a bounded 
confidence consensus model”
Int.Journ.of Mod.Phys. C 16 (2005) 1535 

Continuous version of
Heigselmann-Krause

model



Heigselmann-Krause Dynamics



OCR-HK 
Dynamical Clustering Algorithm

intrinsic frequencies, no more constant intrinsic frequencies, no more constant 
but updated with HK dynamicsbut updated with HK dynamics
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We repeat the procedure for several runs, with different initial
conditions, then we select the configuration  with the highest 
modularity Q

istantaneous frequencies istantaneous frequencies 
(opinion changing rates)(opinion changing rates) loads (betweennesses)loads (betweennesses)

tuning parametertuning parameter

neighbours of node neighbours of node --i  in the selected netwroki  in the selected netwrok

A.Pluchino, M.Ivanchenko, V.Latora, A.Rapisarda and S.Boccaletti - Submitted to PRE (2007) - physics/0607179

Starting from α=0 (synchronized state) we let α to decrease in 
time and we look at the evolution of clusters in frequency 
during a single run (frequency desynchronization).



OCR-HK model: Karate Club



OCR-HK model: Karate Club

W.Zachary (1977) J. Anthropol.Res. 33 452-473

Qmax=0.4 (3 com.)

A.Pluchino, M.Ivanchenko, V.Latora, A.Rapisarda and S.Boccaletti - Submitted to PRE (2007) - physics/0607179

Q(2 com.)=0.37



OCR-HK model: Chesapeake Bay food web (USA)

D.Baird & R.Ulanowicz (1989) Ecol.Monogr. 59 329-364

Qmax=0.38

A.Pluchino, M.Ivanchenko, V.Latora, A.Rapisarda and S.Boccaletti - Submitted to PRE (2007) - physics/0607179



OCR-HK model: “ad hoc” random trial networks
(N=128, <k>=16, 4 communities) with increasing zout

zout=2

zout=4

zout=6



Sensitivity test

A.Pluchino, M.Ivanchenko, V.Latora, A.Rapisarda and S.Boccaletti - Submitted to PRE (2007) - physics/0607179



OCR-HK model on “ad hoc” random trial networks 
Sensitivity test

very high sensitivity

L.Danon, A.Diaz-Guilera, J.Duch and A.Arenas J.of Stat.Mech.: Theory and Exp. (2005)

A.Pluchino, M.Ivanchenko, V.Latora, A.Rapisarda and S.Boccaletti - Submitted to PRE (2007) - physics/0607179



Computational cost

The best hierarchical 
methods scales with 
network size as

O(Nlog2N)

A.Pluchino, M.Ivanchenko, V.Latora, A.Rapisarda and S.Boccaletti - Submitted to PRE (2007) - physics/0607179

OCR-HK model on “ad hoc” random trial networks 

1.initial betwenness calculation: O(N2) very low global 
computational cost 

O(~N2) 2.dynamical clustering evolution time: O(N1.76)
+



Conclusions

• The problem of finding the best community structure
subdivision of a network is very important

• Divisive topological methods have a good sensitivity but 
have also an high computational cost

• We developed a new algorithm based on a dynamical 
clustering tecnique that shows a very high sensitivity and 
at the same time is very fast

• It makes also an interesting bridge between researches 
in complex network and those in synchronization of 
dynamical systems

• Future investigations regard the application of our 
algorithm to large real networks (genetic networks, social 
networks, etc...) – work in preparation...



http://www.ct.infn.it/~cactus


