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Following the basic theorem of interdisciplinary research
that states “Physicists not only know everything; they
know everything better”, physicists (the only ones that
believe in this theorem!:-) have long tried to apply their
skill to fields outside of physics, with varying degrees of
success.

Biophysics, Bioinformatics and Econophysics have been
progressively in fashion in the last years.

Actually, Sociophysics and Opinion Dynamics have been
around for at least three decades, with or without that
name...



The majority of opinion dynamics models developed in the
last years (Sznajd, Deffuant, Hegselmann and Krause,

Galam, Stauffer etc.) try to answer to the following
question:

“Is It possible to put in agreement agents
having different opinions?”

In all above-mentioned models opinions are modelized as
numbers (integer or real).



Of course the reduction of humans opinions
to simple numbers is a great semplification,
and cognitive scientist might dislike it.

But such a dispute sounds like the reduction of
Earth to a point mass in the Keplero Laws.
Clearly, the Earth is not point-like, but for the
purposes of describing celestial motions this
approximation was good and led to the
development of theoretical mechanism by

Newton and others.




Furthermore, in analogy with statistical mechanics laws, if
the behaviour of a person is essentially unpredictable, the
global organization of many mutually interacting subjects
presents general patterns which go beyond specic individual
attributes and may emerge in several different contexts.

Therefore one can suppose that, in a sociophysics context,
quantities like averages and statistical distributions may
characterize not just specific situations but large classes of

systems...




Sociophysics and Opinion Dynamics

Usually, in opinion dynamics

models, one starts by assigning ...then the dynamics starts to act,
randomly a number (i.e. an opinion) ‘ and the agents rearrange their
to each agent of a given population opinion variables (in the opinion
(distributed over a network in the space) due to mutual discussion .
physical space)...




Thus the fundamental question in
standard opinion dynamics is:

“Under what conditions is it possible
to put in agreement agents having
different opinions?”




The Hegselmann and Krause model

The Hegselmann-Krause (HK) model* is based on the
presence of a parameter ¢, called “confidence bound”, which

expresses the ‘range of compatibility’ of the agents’ opinions

In the fully coupled 2D-HK model each opinion is a two-
dimensional vector represented by a point in a [0,1]x[0,1]
squared opinion space:
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At each step, one chooses at
random (or sequentially) one
opinion, corresponding to a given
agent, and checks how many

circular _§8 d . : :
confidence S opinions are compatible with Iit,
range, with Esneess i.,e. are inside the confidence
radius &

SRR  onoc. .

*R. Hegselmann and U. Krause, Journal of Articial Societies and Social Simulation 5,
Issue 3, paper 2 (jasss.soc.surrey.ac.uk) (2002);
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...then the new opinion of the
selected agent becomes equal

ngifggige to the average opinion of its
range, with s g compatible neighbours.
radius & T N

*R. Hegselmann and U. Krause, Journal of Articial Societies and Social Simulation 5,
Issue 3, paper 2 (jasss.soc.surrey.ac.uk) (2002);



£€=0.10: Fragmentation, where several opinion clusters survive

Discrete Monte Carlo (MC) simulations with N=2000 fully connected agents and simultaneous sequential update



By means of Monte Carlo simulations we found that in the

2D-HK model with squared opinion space consensus IS
reached above the critical threshold £~ 0.24, a value that

tends to €.~ 0.23 in the limit of an infinite number of agents.

A Pluchino, V.Latora and A.Rapisarda, Proceedings of the 3" Int.Conf. NEXT 2 ¢ - Kolymbari, Creta (2005)




squared opinion space

R e Dynamics always starts to act

e from the edges of the opinion

space, thus the shape of the

opinion space rules the

R _ simmetry of the cluster
‘ o evolution...
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A.Pluchino, V.Latora and A.Rapisarda, Proceedings of the 3" Int.Conf. NEXT X~ ¢ - Kolymbari, Creta (2005)

Very often, in Monte Carlo
simulations, consensus s
reached through the so called
“connectors™, little groups of
people that make a bridge
between otherwise not
interacting social groups...




Very recently, by integrating a rate equation for a continuum distribution of
2D opinions P(X,t) - that simulates an infinite number of agents - , we

found* that, in the HK model with squared opinion space, consensus is
reached above the critical threshold £_~0.23, in agreement with MC results

) dx, %, P(%,,1) :
P(%,t) = [ d%, P(X,,t) 5(7(—IQ(X1) =¥l o o
: S, 8%0 P (%o, 1)

0

7 ) -0 (X=X)

Below the consensus
threshold

Above the consensus
threshold

*Fortunato, Latora, Pluchino, Rapisarda, Int.Journ.of Mod.Phys.C, 16 (2005) 1535



Thus we recently proposed a new sociophysics model
based on opinion synchronization and inspired to the
celebrate Kuramoto model...




Symehfonzaton and Opinion DYnamics:
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The Kuramoto model*

The Kuramoto model is the simplest models for
synchronization available on the market and consists of N
coupled phase oscillators with natural frequencies
0,

coupling strenght

d 3 (t) K, . ¢
— D —w+— ) sin($ -3), i=1...N 3 *u

! / :
fixed natural frequencies

g(t)e|0,27)

phases ot oscilliators [ £

The coherence of the system is measured by el _iie
the mean field order parameterr (0< r(t) <1): - N&

*proposed by Y.Kuramoto in 1975




The Kuramoto model

As Kuramoto showed analitically in a beautiful analysis,
one observes phase synchronization above a given critical
threshold of the control parameter K. ...

i =

K K

C

Fig. 1. Asvmptotic order parameter oy o8 a funetion of the coupling in the Kuramate maodel

K->0 34@t)~wt+3(0) r—0 Incoherent phase
K—>w 4(@{)=w(t) r-1 Global synchronization



Applications of Kuramoto model

Summing up, the Kuramoto model is simple enough

to be mathematically tractable, yet sufficiently
complex to be not-trivial...

Josephson junction arrays

Physical or Chemical systems
(Josephson junction arrays,

Landau damping in plasmas, . TS

chemical oscillators, coupled ™ | ... i | oo

PRB 62, 4096 (2000)

Mutual Inclictance [AL]]

0.4 0.6 0.8 1.0 1.2

laser arrays, ...) Tempetus 00 oy s s

Biological systems
(fireflies, pacemaker cells in
the heart and in the brain,
chorusing crickets, ...)




Actually, the world changes and we change with it...

...but everyone in a different way:

-There are conservative people, that tend to y
maintain their opinion or their style of life against
L3

everything and everyone;

-There are more flexible people that change idea
quite easily and usually follow any current fashion
and trend;

-Finally there are those who run faster than the rest
of the world anticipating the others with new ideas
and insights (progressist or innovative people).




Inspired by the Kuramoto model, we proposed a new
consensus model based on the opinion synchronization of
many agents affected by an individual different inclination to
change opinion (the analogous of the Kuramoto’'s natural

frequencies)

Thus the true question to answer should not be:

agents having a

“Is It possible tin agree
an to change opinion?”

different natural incli

...but should become:

“Is It possible to put in agreement agents
having different opinions?”




The Opinion Changing Rate model*

In order to do this, we modified the Kuramoto model considering
the following rate equations describing N interacting agents™:

coupling strenght

(1) e]—oo +oo[
dx, K By _ X ( ,
= w +—Zsm(x —x) e =1, LN —
dt f N5 ~A “ E[O’ ]independent!
natural op.changing rates opinions

- the x(t) are the agent’s opinions

- the @ ; are the so-called natural opinion changing rate,
l.e. the natural (fixed) tendency of the i-th agent to change
its opinion, uniformly distributed. This allow us to simulate
conservative (w. ~ 0) and innovative people (o, > 0).

*Pluchino, Latora, Rapisarda, Int.Journ.of Mod.Phys.C 16 (2005) 515



The Opinion Changing Rate model*

In order to do this, we modified the Kuramoto model considering
the following rate equations describing N interacting agents™:

couplmg strenght

dx, L + Sln(x X)E X, (t) € |00, + 0|
i _ -
dt f N 5= “ E[O’ 1]i:1rg§pendent!

natural op.changing rates oplmons

The interaction o}
potential decreases °f
for distant opinions:

*Pluchino, Latora, Rapisarda, Int.Journ.of Mod.Phys.C 16 (2005) 515



Defining a coherence order parameter R by means of
the standard deviation of the opinion changing rate
(O<R<1), we observe a Kuramoto-like phase transition :
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Phase transition for the asymptotic
order parameter R, at K.~1.4
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K=1 (incoherent phase) : anarchy
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K=2 (partially synch. phase) : bipolarism
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K=2.2-2.5-3.0 (partially synchronized phase)
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Increasing K in the partially sinchronized phase the innovative
group survives longer than the conservative one... Why?

“It is not the strongest that survives, nor the
most intelligent; it is the one that is the most
adaptable to change” C.Darwin




K=4 (synchronized phase) : dictatorship
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Thus, In order to ensure an equilibrium between conservative
and innovative groups (democracy), a changing society needs
a coupling K strictly included in a narrow window (1.5<K<2.5)
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Thus, In order to ensure an equilibrium between conservative
and innovative groups (democracy), a changing society needs
a coupling K strictly included in a narrow window (1.5<K<2.5)
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Metastability of the dictatorship regime

If one starts all the agents with the same opinion (dictatorship) at the
beginning of the partially synchronized phase, one observes a metastability
regime that becomes stable approaching the value K=1.62
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Metastability near the phase transition seems to be
ubiquitous in many models:

Hamiltonian Mean Field Model Kuramoto Model

Fig.1 - A. Pluchino, V. Latora and A. Rapisarda
ossl- | bonrrmmbommmmmemm KURAMOTO MODEL - N-10000, MOic. 10 events averages
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(2004) 315 ; Physica A 338 (2004) 60

K-Satisfiability Model

Mezard, Parisi, Zecchina, ‘Analityc and Algorithmic
Solution of Random Satisfiability Problems” - ¥
Science 279 (2002) p.842 .35




Increasing coupling: from anarchy to democracy
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Decreasing coupling: from order to anarchy
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More recently we tried to extend the

synchronization approach to the problem of
finding community structures in social networks

and in other complex networks...




Finding Community Structures in Complex Networks:

Tuning Synchronization in Weighted Networks



Finding Community Structures In
Complex Networks

An important open problem in complex networks analysis is the
identification of modular structures.

Community 1 inter-communities Community 2
mynr edges =
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Community 3™, - - intra-community

edges

Distinct modules, motives,
subgroups or communities within
networks can loosely be defined
as subset of nodes which are
more densely linked, when
compared to the rest of the
network.

Communities, of course, are fundamental in social networks (parties,
cultures, elites), but are also important in biochemical, metabolic or neural
networks (functional groups), in the world wide web (thematic clusters), in
economic networks, food webs, computer clusters and so on...



A useful set of techniques for the detection of community structures was
firstly developed in social network analysis and is known as hierarchical
clustering methods...

These techniques are aimed at discovering natural divisions of (social)
networks into groups, based on various metric of similarity or strength of
connection between vertices.

They fall into two broad classes: agglomerative and divisive methods,
depending on whether they focus on the addition or the removal of edges
to or from the network...

Hierarchical tree or dendrogram

Only one community

divisive
methods

agglomerative

methods 1‘@“ gk

non-connected nodes




Divisive methods remove progressively the edges of the networks in terms
of their ‘importance’, for example the importance in connecting many pairs
of nodes (shortest-path betweenness*), or in propagating some
information over the network (information centrality™)...

ponnesior By doing this repeatedly, and
recalculating the betweenness at
each step, the network breaks
iteratively into smaller and smaller
components...

...until it breaks into a collection of
single non-connected nodes.

The divisive algorithm produces a hierarchy of subdivisions of the network.
But how to know which subdivision is the best one for a given network?

Clearly we need some measure of the cohesiveness of the communities...

This measure is the "modularity” Q* a quantity that, at each step,
compares the actual fraction of edges intra-community with the expected
value in the same network with random connections, and allows us to test
if the communities found by the divisive algorithm are the good ones...

*M.E.J.Newman and M.Girvan, 2004 Phys. Rev. E 69 026113
**S.Fortunato, V.Latora, M.Marchiori, 2004 Phys. Rev. E 70 056104




Modularity Q

od

Q=Tre—|e*] | 2 .

with i ‘;]

Zachary’s Karate Club o {e..} 7595
friendships network U nexn,

Correct /

classification!

Community 2 (18 nodes) Community 1 (16 nodes)

Shortest-path betweenness method

M.E.J.Newman and M.Girvan, 2004 Phys. Rev. E 69 026113
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How synchronization can be useful
for the identification of community structures in
complex networks?




THE MASTER STABILITY FUNCTION APPROACH
TO ENHANCE SYNCHRONIZATION IN COMPLEX NETWORKS

Suppose to have a (unweighted, undirected) network of N linearly coupled
identical oscillators®. The equation of motion reads:

Network with N nodes

coupling strenght

/i
S 2o N Tro
X, =F(%)-0) G HI\X

4

—%] i=1..,N

dynamical system
defined over each
node of the network

coupling matrix

vectorial coupling function

If G has a real spectrum of eigenvalues A; (i.e. for symmetric coupling) and

we associate A, to the state x(t), the stability of the synchronous manifold
(xi(t)=x4(t), Vi) requires that all the conditional Lyapunov exponents A

associated with A,<...< A, <...< A, would be negative.

Defining the Master Stability Function (MSF) as the largest Lyapunov
exponent A__ versus a parameter v=cA, it can be shown* that, for a

large class of oscillatory systems, the MSF is negative in a finite

parameter interval (14, 1/5).

*M.Chavez, D.U.Hwang, A.Amann, H.G.E.Hentschel and S.Boccaletti, Phys. Rev. Lett. 94 218701 (2005)




THE MASTER STABILITY FUNCTION APPROACH
TO ENHANCE SYNCHRONIZATION IN COMPLEX NETWORKS

Suppose to have a (unweighted, undirected) network of N linearly coupled
identical oscillators®. The equation of motion reads:

Network with N nodes -
vl S1d coupling strenght

/
; AR 7 5 _
X =F(X)-02 G H[%-X] i=1..N

I
4

dynamical system
defined over each coupling matrix
node of the network

vectorial coupling function

L ]

If G has a real spectrum of eigenvalues A; (i.e. for symmetric coupling) and

we associate A, to the state x(t), the stability of the synchronous manifold
(xi(t)=x4(t), Vi) requires that all the conditional Lyapunov exponents A

associated with A,<...< A, <...< A, would be negative.

Thus the condition for synchronization stability is governed by the ratio
AN/, the more packed the eigenvalues of G are, the higher is the chance

of having all Lyapunov exponents into the stability range for some o.

*M.Chavez, D.U.Hwang, A.Amann, H.G.E.Hentschel and S.Boccaletti, Phys. Rev. Lett. 94 218701 (2005)



At this point one can use the master stability function approach:

1) to find the best synchronization condition of a given network*

2) to tune the synchronization of a network in order to identify community

structures™*

Both the results can be realized with an opportune choice of
the coupling matrix G; in the network equation, by means of a
weighting procedure that assignes to each edge a ‘load’ |
equal to its betweenness (i.e. the number of shortest paths

that are making use of that edge):

coupling matrix G=G(«)

EG)-oy

JekK;

'S

Z 5

jekK;

—

H[X —

1=1,...

,N

where « is a real tunable parameter and K. is the set of neighbors of the it" node.

master stability function arguments apply

*M.Chavez, D.U.Hwang, A.Amann, H.G.E.Hentschel and S.Boccaletti, Phys. Rev. Lett. 94 218701 (2005)

**A.Pluchino, V.Latora, A.Rapisarda and S.Boccaletti, in preparation




Finding the best synchronization condition
for a network of oscillators

=F(X)- Z ]
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Scale free networks
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M.Chavez, D.U.Hwang, A.Amann, H.G.E.Hentschel and S.Boccaletti, Phys. Rev. Lett. 94 218701 (2005)




Tuning the synchronization of a network of oscillators
and finding community structures

X =F(X)- GIaZIU“ﬁ[Z—X’j i=1..,N
Z ij JeK;
IEN

O —> —00 Edges with the greatest betweenness are weighted less and less
and oscilators should progressively desynchronize...

Kuramoto’s non identical 1D oscillators

R .
S %lu sin@@-4)  i=1..,N

JeK

Zachary’s network ( N=34)

=q+

Chaotic Rossler identical 3D oscillators

™ K .
X =-oy, -7 —sze& (% —x;)

jek;

Y, =wX +0.165y;

1=1..,N

2. =0.2+z(x —10)

\
A.Pluchino, V.Latora, A.Rapisarda and S.Boccaletti, in preparation



Kuramoto’s non identical 1D oscillators

- K v :
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ij ek
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D I. T | T | T T

2
[

order par. for alpha
= =

asympt. frequencies

=
&

alpha exponent of betweenness

A.Pluchino, V.Latora, A.Rapisarda and S.Boccaletti, in preparation
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Kuramoto’s non identical 1D oscillators
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Chaotic Rdssler identical 3D oscillators
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Chaotic Rdssler identical 3D oscillators
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Work in progress: further tests of our method...

 sensitivity tests with ad hoc networks with a well known
community structure

» sensitivity tests with larger real networks with various
topologies (scale free, random, small world...)

« comparison of the computational performance of our
method with those of other community identification
methods

* testing the method using other dynamical systems, like
for example the OCR model on different topologies



So, we conclude that surely
synchronization can play an
Important role In sociophysics,
In opinion dynamics and, more
INn general, in complex networks
dynamics...

...but are not excluded
Interesting applications
also to political science...©
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