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Following the basic theorem of interdisciplinary research
that states “Physicists not only know everything; they
know everything better”, physicists (the only ones that
believe in this theorem!:-) have long tried to apply their
skill to fields outside of physics, with varying degrees of 
success.

Biophysics, Bioinformatics and Econophysics have been
progressively in fashion in the last years.

Actually, Sociophysics and Opinion Dynamics have been
around for at least three decades, with or without that
name…



The majority of opinion dynamics models developed in the 
last years (Sznajd, Deffuant, Hegselmann and Krause, 
Galam, Stauffer etc.) try to answer to the following
question:

“Is it possible to put in agreement agents
having different opinions?”

In all above-mentioned models opinions are modelized as
numbers (integer or real). 



Of course the reduction of humans opinions
to simple numbers is a great semplification, 
and cognitive scientist might dislike it.

But such a dispute sounds like the reduction of 
Earth to a point mass in the Keplero Laws. 
Clearly, the Earth is not point-like, but for the 
purposes of describing celestial motions this
approximation was good and led to the 
development of theoretical mechanism by
Newton and others.
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Furthermore, in analogy with statistical mechanics laws, if
the behaviour of a person is essentially unpredictable, the 
global organization of many mutually interacting subjects 
presents general patterns which go beyond specic individual
attributes and may emerge in several different contexts. 

Therefore one can suppose that, in a sociophysics context, 
quantities like averages and statistical distributions may
characterize not just specific situations but large classes of 
systems…



Sociophysics and Opinion Dynamics
Usually, in opinion dynamics
models, one starts by assigning
randomly a number (i.e. an opinion) 
to each agent of a given population
(distributed over a network in the 
physical space)…

…then the dynamics starts to act, 
and the agents rearrange their
opinion variables (in the opinion 
space) due to mutual discussion .
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Thus the fundamental question in 
standard opinion dynamics is:

“Under what conditions is it possible
to put in agreement agents having

different opinions?”



The Hegselmann-Krause (HK) model* is based on the 
presence of a parameter e, called “confidence bound”, which
expresses the ‘range of compatibility’ of the agents’ opinions

The Hegselmann and Krause model

*R. Hegselmann and U. Krause, Journal of Articial Societies and Social Simulation 5,
issue 3, paper 2 (jasss.soc.surrey.ac.uk) (2002);

In the fully coupled 2D-HK model each opinion is a two-
dimensional vector represented by a point in a [0,1]x[0,1] 
squared opinion space:

circularcircular
confidenceconfidence
rangerange, , withwith
radiusradiuse

At each step, one chooses at 
random (or sequentially) one 
opinion, corresponding to a given
agent, and checks how many
opinions are compatible with it, 
i.e. are inside the confidence
range…
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…then the new opinion of the 
selected agent becomes equal
to the average opinion of its
compatible neighbours.



The HK dynamics tends to clusterize opinions but the  
asymptotic (stationary) configuration of clusters reached by
the system strongly depends on the value of the confidence
bound…

e=0.10 :   Fragmentation, where several opinion clusters survive

e=0.20 :   Polarization, with few big clusters of opinions ("parties") survive

e=0.30 :   Consensus, with all agents sharing the same opinion

Discrete Monte Carlo (MC) simulations with N=2000 fully connected agents and simultaneous sequential update
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t=0 t=1 t=2 t=3 t=4



By means of Monte Carlo simulations we found that in the 
2D-HK model with squared opinion space consensus is
reached above the critical threshold ec~ 0.24, a value that
tends to ec~ 0.23 in the limit of an infinite number of agents.

A.Pluchino, V.Latora and A.Rapisarda, Proceedings of the 3rd Int.Conf. NEXT SF - Kolymbari, Creta (2005) 



A.Pluchino, V.Latora and A.Rapisarda, Proceedings of the 3rd Int.Conf. NEXT SF - Kolymbari, Creta (2005) 

VeryVery oftenoften, in Monte Carlo , in Monte Carlo 
simulationssimulations, , consensusconsensus isis
reachedreached through the so through the so calledcalled
““connectorsconnectors””, little , little groupsgroups of of 
people people thatthat makemake a bridge a bridge 
betweenbetween otherwiseotherwise notnot
interactinginteracting social social groupsgroups……

DynamicsDynamics alwaysalways startsstarts toto actact
fromfrom the the edgesedges of the opinion of the opinion 
space, space, thusthus the the shapeshape of the of the 
opinion space opinion space rulesrules the the 
simmetrysimmetry of the of the clustercluster
evolutionevolution……

circularcircular opinion spaceopinion space

squared opinion spacesquared opinion space



*Fortunato, Latora, Pluchino, Rapisarda, Int.Journ.of Mod.Phys.C, 16 (2005) 1535

Very recently, by integrating a rate equation for a continuum distribution of 
2D opinions - that simulates an infinite number of agents - , we
found* that, in the HK model with squared opinion space, consensus is
reached above the critical threshold ec~0.23, in agreement with MC results
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Another possible way of viewing the consensus formation
process is that one of considering it as a form of opinion 
synchronization…

Thus we recently proposed a new sociophysics model
based on opinion synchronization and inspired to the 
celebrate Kuramoto model…





The Kuramoto model*

*proposed by Y.Kuramoto in 1975
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The Kuramoto model is the simplest models for
synchronization available on the market and consists of N 
coupled phase oscillators with natural frequencies
………..............…:
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The Kuramoto model
As Kuramoto showed analitically in a beautiful analysis, 
one observes phase synchronization above a given critical
threshold of the control parameter Kc …

0 ( ) (0) 0i i iK t t rϑ ω ϑ→ ≈ + → Incoherent phase
( ) ( ) 1iK t t rϑ ψ→ ∞ ≈ → Global synchronization

rrinfinf

KKcc



Applications of Kuramoto model

Physical or Chemical systems
(Josephson junction arrays, 
Landau damping in plasmas, 
chemical oscillators, coupled 

laser arrays, …)

Biological systems
(fireflies, pacemaker  cells  in 

the heart and in the brain, 
chorusing crickets, …)

Summing up, the Kuramoto model is simple enough
to be mathematically tractable, yet sufficiently
complex to be not-trivial... 



-There are conservative people, that tend to
maintain their opinion or their style of life against
everything and everyone;

Actually, the world changes and we change with it…
…but everyone in a different way:

-There are more flexible people that change idea 
quite easily and usually follow any current fashion 
and trend;

-Finally there are those who run faster than the rest
of the world anticipating the others with new ideas
and insights (progressist or innovative people).



“Is it possible to put in agreement agents
having different opinions?”

Thus the true question to answer should not be:

…but should become:

“Is it possible to put in agreement agents having a 
different natural inclination to change opinion?”

Inspired by the Kuramoto model, we proposed a new 
consensus model based on the opinion synchronization of 
many agents affected by an individual different inclination to
change opinion (the analogous of the Kuramoto’s natural
frequencies) 



The Opinion Changing Rate model*

In order to do this, we modified the Kuramoto model considering
the following rate equations describing N interacting agents*:
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*Pluchino, Latora, Rapisarda, Int.Journ.of Mod.Phys.C 16 (2005) 515

] [( ) ,ix t ∈ −∞ +∞

[ ]0, 1iω ∈ time time 
independentindependent!!

iω
- the xi(t) are  the agent’s opinions
- the        are the so-called natural opinion changing rate, 
i.e. the natural (fixed) tendency of the i-th agent to change
its opinion, uniformly distributed. This allow us to simulate 
conservative ( ) and innovative people (        ).0iω ∼ 0iω �
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Defining a coherence order parameter R by means of 
the standard deviation of the opinion changing rate 
(0<R<1), we observe a Kuramoto-like phase transition :

N=1000

Phase transition for the asymptotic
order parameter Rinf at KC~1.4



K=1 (incoherent phase) :  anarchy

N=1000



K=2 (partially synch. phase) :  bipolarism

N=1000

conservativeconservative
peoplepeople

innovativeinnovative
peoplepeople

public opinionpublic opinion



K= 2.2 - 2.5 - 3.0 (partially synchronized phase)

Increasing K in the partially sinchronized phase the innovative 
group survives longer than the conservative one… Why?

“It is not the strongest that survives, nor the 
most intelligent; it is the one that is the most
adaptable to change” C.Darwin



K=4 (synchronized phase) :  dictatorship

N=1000



DemocracyDemocracy windowwindow

Thus, in order to ensure an equilibrium between conservative 
and innovative groups (democracy), a changing society needs
a coupling K strictly included in a narrow window (1.5<K<2.5)

N=1000



Thus, in order to ensure an equilibrium between conservative 
and innovative groups (democracy), a changing society needs
a coupling K strictly included in a narrow window (1.5<K<2.5)

MetastabilityMetastability of the of the DictatorialDictatorial regimeregime

N=1000



Metastability of the dictatorship regime

If one starts all the agents with the same opinion (dictatorship) at the 
beginning of the partially synchronized phase, one observes a metastability
regime that becomes stable approaching the value K=1.62

N=1000



Metastability near the phase transition seems to be 
ubiquitous in many models:

KK--SatisfiabilitySatisfiability ModelModel
Mezard, Parisi, Zecchina, ‘Analityc and Algorithmic 

Solution of Random Satisfiability Problems’ -
Science 279 (2002) p.842

HamiltonianHamiltonian MeanMean FieldField ModelModel

Pluchino, Latora,  Rapisarda, Physica D 193 
(2004) 315 ; Physica A 338 (2004) 60 

KuramotoKuramoto ModelModel

A.Pluchino and A.Rapisarda, Proceedings of the 3rd

Int.Conf. NEXT SF - Kolymbari, Creta (2005) 



Increasing coupling: from anarchy to democracy

PoliticalPolitical partiesparties
or or 

opinion clusters opinion clusters 
formationformation

N=100



Decreasing coupling: from order to anarchy

N=100

FallFall of a of a 
dictatorshipdictatorship

oror
dissolutiondissolution of of 

anan empireempire



More recently we tried to extend the 
synchronization approach to the problem of 
finding community structures in social networks
and in other complex networks…





Finding Community Structures in 
Complex Networks

An important open problem in complex networks analysis is the 
identification of modular structures.

Distinct modules, motives, 
subgroups or communities within 
networks can loosely be defined 
as subset of nodes which are 
more densely linked, when 
compared to the rest of the 
network.

Community 2Community 2

Community 3Community 3

Community 1Community 1

intraintra--communitycommunity
edgesedges

interinter--communitiescommunities
edgesedges

Communities, of course, are fundamental in social networks (parties, 
cultures, elites), but are also important in biochemical, metabolic or neural 
networks (functional groups), in the world wide web (thematic clusters), in 
economic networks, food webs, computer clusters and so on…



A useful set of techniques for the detection of community structures was 
firstly developed in social network analysis and is known as hierarchical 
clustering methods…

These techniques are aimed at discovering natural divisions of (social) 
networks into groups, based on various metric of similarity or strength of
connection between vertices.

They fall into two broad classes: agglomerative and divisive methods, 
depending on whether they focus on the addition or the removal of edges 
to or from the network…

agglomerativeagglomerative
methodsmethods

divisivedivisive
methodsmethods

HierarchicalHierarchical treetree or or dendrogramdendrogram

nonnon--connectedconnected nodesnodes

OnlyOnly one communityone community



Divisive methods remove progressively the edges of the networks in terms 
of their ‘importance’, for example the importance in connecting many pairs 
of nodes (shortest-path betweenness*), or in propagating some 
information over the network (information centrality**)…

*M.E.J.Newman and M.Girvan, 2004 Phys. Rev. E 69 026113
**S.Fortunato, V.Latora, M.Marchiori, 2004 Phys. Rev. E 70 056104

By doing this repeatedly, and 
recalculating the betweenness at 
each step, the network breaks 
iteratively into smaller and smaller 
components…
…until it breaks into a collection of 
single non-connected nodes.

The divisive algorithm produces a hierarchy of subdivisions of the network. 
But how to know which subdivision is the best one for a given network?

This measure is the “modularity” Q*, a quantity that, at each step, 
compares the actual fraction of edges intra-community with the expected 
value in the same network with random connections, and allows us to test 
if the communities found by the divisive algorithm are the good ones…

Clearly we need some measure of the cohesiveness of the communities…

connectorconnector



Modularity Q

Zachary’s Karate Club  
friendships network

M.E.J.Newman and M.Girvan, 2004 Phys. Rev. E 69 026113

instructorinstructor administratoradministrator

Shortest-path betweenness method

CorrectCorrect
classificationclassification!!
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How synchronization can be useful
for the identification of community structures in 

complex networks?



THE MASTER STABILITY FUNCTION APPROACH 
TO ENHANCE SYNCHRONIZATION IN COMPLEX NETWORKS

*M.Chavez, D.U.Hwang, A.Amann, H.G.E.Hentschel and S.Boccaletti, Phys. Rev. Lett. 94 218701 (2005)
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Suppose to have a (unweighted, undirected) network of N linearly coupled 
identical oscillators*. The equation of motion reads:

If G has a real spectrum of eigenvalues λi (i.e. for symmetric coupling) and 
we associate λ1 to the state xs(t), the stability of the synchronous manifold
(xi(t)=xs(t),  i) requires that all the conditional Lyapunov exponents L
associated with λ2≤…≤ λi ≤…≤ λN would be negative. 

∀

Defining the Master Stability Function (MSF) as the largest Lyapunov
exponent Lmax versus a parameter n=sl, it can be shown* that, for a 
large class of oscillatory systems, the MSF is negative in a finite 
parameter interval (n1, n2). 
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Suppose to have a (unweighted, undirected) network of N linearly coupled 
identical oscillators*. The equation of motion reads:

If G has a real spectrum of eigenvalues λi (i.e. for symmetric coupling) and 
we associate λ1 to the state xs(t), the stability of the synchronous manifold
(xi(t)=xs(t),  i) requires that all the conditional Lyapunov exponents L
associated with λ2≤…≤ λi ≤…≤ λN would be negative. 

∀

Thus the condition for synchronization stability is governed by the ratio 
lN/l2:the more packed the eigenvalues of G are, the higher is the chance 
of having all Lyapunov exponents into the stability range for some s.



**A.Pluchino, V.Latora, A.Rapisarda and S.Boccaletti, in preparation
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where a is a real tunable parameter and Ki is the set of neighbors of the ith node.

*M.Chavez, D.U.Hwang, A.Amann, H.G.E.Hentschel and S.Boccaletti, Phys. Rev. Lett. 94 218701 (2005)

1)   to find the best synchronization condition of a given network*

At this point one can use the master stability function approach: 

2)   to tune the synchronization of a network in order to identify community 
structures**

Both the results can be realized with an opportune choice of 
the coupling matrix Gij in the network equation, by means of a 
weighting procedure that assignes to each edge a ‘load’ lij
equal to its betweenness (i.e. the number of shortest paths 
that are making use of that edge):

couplingcoupling matrixmatrix G=GG=G((aa))

master stability function arguments apply



M.Chavez, D.U.Hwang, A.Amann, H.G.E.Hentschel and S.Boccaletti, Phys. Rev. Lett. 94 218701 (2005)

Finding the best synchronization condition 
for a network of oscillators
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Tuning the synchronization of a network of oscillators 
and finding community structures

ZacharyZachary’’s network ( N=34 )s network ( N=34 )
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The two main communities of 
Zachary’s network have been 
almost correctly recognized

16 nodes

18 nodes



ChaoticChaotic RRöösslerssler identicalidentical 3D 3D oscillatorsoscillators
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ChaoticChaotic RRöösslerssler identicalidentical 3D 3D oscillatorsoscillators
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In this case the two 
main communities of 

Zachary’s network have 
been perfectly 

recognized

16 nodes

18 nodes



Work in progress: further tests of our method…

• sensitivity tests with ad hoc networks with a well known 
community structure 

• sensitivity tests with larger real networks with various 
topologies (scale free, random, small world…)

• comparison of the computational performance of our 
method with those of other community identification 
methods

• testing the method using other dynamical systems, like 
for example the OCR model on different topologies



http://www.ct.infn.it/~cactus

So, we conclude that surely
synchronization can play an
important role in sociophysics, 
in opinion dynamics and, more 
in general, in complex networks 
dynamics…

…but are not excluded
interesting applications
also to political science…☺

‘FACE’ SYNCHRONIZATION


