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The problem: Finding Community
Structures in Complex Networks

An important open problem in complex networks analysis is the

identification of modular structures:

Community 1

Complex Networl

Inter-communities

Community 2

Distinct modular structures,
usually called Communities,
can loosely be defined as
subsets of nodes (vertices)
which are more densely
linked, when compared to
the rest of the network.



Communities, of course, are fundamental in social networks (parties,
cultures, elites), but also in metabolic (biochemical patways) or neural
networks (functional groups), in food webs and ecosystems (taxpnomic

categories), in the world wide web (thematic pages), computer clusters
and so on...

...thus many techniques has been developed in the years to deal with the
problem of decting community structures in complex networks:
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HIERARCHICAL CLUSTERING METHODS

These techniques, firstly developed in social network analysis, are aimed
at discovering natural divisions of networks into groups, based on various
metric of similarity or strength of connection between vertices.

s i They fall into two broad classes:
only ona community : NS

[ agglomerative and divisive
| methods, depending on whether

i they focus on the addition or the
removal of edges to or from the
network, and generating a
dendrogram called hierarchical tree.

LAl

N non-connected nodes



Divisive topological methods: progressively remove the edges of the
network following their importance in connecting many pairs of nodes

(expressed, for example, by the edge betweenness* i.e. the number of
shortest paths which are making use of a given edge)

By doing this repeatedly, recalculating the betweenness at each step, the

network breaks iteratively into smaller and smaller isolated clusters
(communities or modules)...

..until it breaks
into a collection
of non-connected
single nodes...

But which subdivision does give the best
communities configuration for a given network?

*M.E.J.Newman and M.Girvan, 2004 Phys. Rev. E 69 026113



In order to establish this, it is often used the “modularity” Q *, a quantity

that, at each step, compares the fraction of intra-community edges with
the expected value of the same quantity in an equivalent network with
random connections (null model), and allows us to test which communities
configuration found by the divisive algorithm is the best one:

modularity

fraction of edges that fraction of edges that connect
connect vertices in vertices in community i for a
community i random network

Q=0 for only 1 com. or N isolated nodes

Tipically 0.3 < Q < 0.7

*M.E.J.Newman and M.Girvan, 2004 Phys. Rev. E 69 026113

n. is the number of communities

lle|l| is a n, x n, matrix whose

elements €; represent the fraction
of total edges connecting a node in
community i with a node in
community j

b, = Z]‘elj represents the

fraction of total edges connected to
a node in community-i
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Detecting community structure is fundamental for uncovering the
links between structure and function in complex networks and for
practical applications in many disciplines such as biology and
sociology. A popular method now widely used relies on the
optimization of a quantity called modularity, which is a quality
index for a partition of a network into communities. We find that
modularity optimization may fail to identify modules smaller than
a scale which depends on the total size of the network and on the
degree of interconnectedness of the modules, even in cases where
modules are unambiguously defined. This finding is confirmed
through several examples, both in artificial and in real social,
biological, and technological networks, where we show that mod-
ularity optimization indeed does not resolve a large number of
modules. A check of the modules obtained through modularity
optimization is thus necessary, and we provide here key elements
for the assessment of the reliability of this community detection
method.

complex networks | modular structure | metabolic networks
social networks

annealing (27, 28), but this method is computationally very
expensive.

Modularity optimization seems, therefore, to be a very effec-
tive method to detect communities, both in real and in artificially
generated networks. However, modularity itself has not yet been
thoroughly investigated, and only a few general properties are
known. For example, it is known that the modularity value of a
partition does not have a meaning by itself, but only when
compared with the corresponding modularity expected for a
random graph of the same size (29), as the latter may attain very
high values due to fluctuations (27).

In this article, we present a critical analysis of modularity and
of the applicability of modularity optimization to the problem of
community detection. We show that modularity contains an
intrinsic scale that depends on the total number of links in the
network. Modules that are smaller than this scale may not be
resolved, even in the extreme case where they are complete
graphs connected by single bridges. The resolution limit of
modularity actually depends on the degree of interconnected-
ness between pairs of communities and can reach values of the
order of the size of the whole network. Tests performed on



Modularity in computer generated random trial networks
(N=128, <k>=16, 4 communities)

Zout = 2
Q~0.7
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Modularity in computer generated random trial networks
(N=128, <k>=16, 4 communities)

Zout =4
Q~0.6




Modularity in computer generated random trial networks
(N=128, <k>=16, 4 communities)

A | Zout=6

N ﬁl}‘




Zachary’s Karate Club
friendships network

gocdness of split

Community 2 (18 nodes) Community 1 (16 nodes)

Girvan Newman
Shortest-path edge-betweenness divisive method

M.E.J.Newman and M.Girvan, 2004 Phys. Rev. E 69 026113
W.Zachary (1977) J.Anthropol.Res. 33 452-473
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Chesapeake Bay food web (USA)

The Chesapeake Bay -- the largest estuary in the
US. -- is a complex ecosystem that includes
important habitats and food webs. The Bay itself,
its rivers, wetlands, trees and land all provide
homes, protection or food for complex groups of
species, with impressive combinations of
relationships.

D.Baird & R.Ulanowicz (1989) Ecol.Monogr. 59 329-364

Predatory Relationships NETWORK among the
33 most important taxa
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Heterotrophic microflagellates
Free bacteria in water column/DOC*

Fish larvae

American shad

Striped bassy

Alewife and blue herring
Sea nettles

Blue crab

Atlantic menhaden
Ctenophores

American oyster

fsls) anktOQ

Bacteria attached to suspended POC
Other suspension feeders
Phytoplankton

Softshell clam
Microzooplankton

Bay anchovy

Summer flounder

Weakfish

he

White perch

Bluefish

Macoma spp. (bivalve)

Sea catfish

Bacteria attached to sediment POCt
Hogchoker

Other olychaetes

Spot

Nereis (Rag worm)

Atlantic croaker
Crustacean deposit feeders

Benthic diatoms
Meiofauna

T Q&.H UT

* Dissolved Organic Carbon O Benthic Organisms
t Particulate Organic Carbon B Pelagic Organisms

¢ Undetermined

Girvan M, Newman M E J. Community structure in social and biological networks.

In Proc. the National Academy of Science , USA, 2002, 99(12): 7821-7826.



Topological Divisive Algorithms like GN show in
general a good sensitivity but have the problem of
recalculating betweennesses at each step

Since a single-step calculus of all the edge-
betweennesses takes O(N?) operations, and the whole
process takes K~N steps, these algorithms are quite
slow — O(N?) on a spars graph—

Other algorithms are quicker but in many cases their
sensitivity in the identification of an unknown number
of communities is not very good...



We propose a
DIFFERENT DIVISIVE
HIERARCHICAL APPROACH
based on
Synchronization of Dynamical
Oscillators in Weighted Networks
(Dynamical Clustering)




An example for Synchronization

The Kuramoto model* is the simplest models for
synchronization available on the market and consists of N
fully coupled phase oscillators with intrinsic natural
frequencies @, and coupling parameter K:

coupling strenght

(t K &
g ):wl. +—Ysin(®,—-9,), i=L..,N
dt j=1 \’\
phases of oscillators 191- (t) = [0,277:)

natural (fixed) frequencies

The coherence of the system is measured by
the mean field order parameter r (0<r(t)<1):

0;

Synchronized phase

N Hom ogeneous
phase ‘ I
—lw
K K

*proposed by Y.Kuramoto in 1975 Asymptotic order parameter r as a function of the coupling in the Kuramoto maodel



Weighting procedure of a Complex Network

*M.Chavez, D.U.Hwang, A.Amann, H.G.E.Hentschel and S.Boccaletti, Phys. Rev. Lett. 94 218701 (2005)

Suppose to have a (unweighted, undirected) network of N coupled
identical oscillators®. The equation of motion reads:
Netw ork with N nodes coupling strenght

\

N
¥, =F()-0) GH( -%), i=1,..,N

Ay Tl
dynamical system

defined over each

node of the network

coupling matrix coupling function

Let us ho‘w to perform an opportune choice of the coupling matrix G; in
the network equation, by means of a weighting procedure that assignes to
each edge a load |; equal to its betweenness (i.e. the number of shortest
paths that are making use of that edge):

coupling matrix G=G (1)

H(x. —X,), i =1,..,N

where a(t) is a real tunable parameter and K; is the set of neighbors of the it" node.



1.

=

Tuning the synchronization of a network of oscillators for finding
community structures

DYNAMICAL CLUSTERING ALGORITHM

N l o(1)

= F X)—O —X.), i=1,...N
W e
JEK;

At variance with the topological methods we calculate the edge betweennesses (i.e.
the edge’s loads 1;;) only one time for a given network;

t=0: (0)~0 We fix the coupling strenght ¢ so that the system starts
from a state which rapidly synchronizes in frequency;

t>0: OC(I) LNy ¥ Decreasing a at each time-step, the edges with a great
' betweenness will be weighted less and less and the
oscillators progressively desynchronize;

Welook at dusters of nodes (communities) oscillating with a common phase or
frequency and we select the clusters configuration with the highest modularity Q.

S.Boccaletti, M.Ivanchenko, V.Latora, A.P. and A.Rapisarda - Physical Review E 75 (2007) 045102(R)



First tests on the Karate Club Network:

Kuramote’s non identical 1D oscillators
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The Opinion Changing Rate (OCR) model

It is a modification of the Kuramoto model and consists of
the following rate equations describing the opinions
evolution of N fully interacting agents:

istantaneous frequencies coupling strenght
\ . O
xiza)i+—2 i=1,....N
N
f j=1 x,(t) € |—o0,+oo|

mtrinsic frequencies

x,(0) e |-1,+1]
w, €|0,1]

The interaction o2f /\ :

potential decreases °f _
for distant opinions: °*[ 1

X = X
i i

A.P., V.Latora, A.Rapisarda, Int.Journ.of Mod.Phys. C 16 515 (2005)



OCR-HK on weighted networks:
Dynamical Clustering (DC) Algorithm

In order to apply the DC algorithm to the OCR system we further
modified the standard OCR model forcing the oscillators natural
frequencies to follow the so called Heigselmann-Krause dynamics, a
process which improves the performance of the algorithm and
minimizes the dependence on the initial distribution of natural
frequencies:

loads (b etw eennesses)

tuning parameter ( da = 103)

X, (1) = 0, (1) + 2 J o) Zﬁ L a(t) Sln(x Ty e B ; i=1,...,N
ij

JEK;

JEK; o
neighbours of node -1 in the selected netwrok

intrinsic frequencies,
updated in time with HK
dynamics (based on the

concept of “confidence| . S.Boccaletti, M.Ivanchenko, V.Latora, A.P. and A.Rapisarda
bound”) Physical Review E 75 (2007) 045102(R) for further details




Karate Club

OCR-HK Tests on real networks
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DETECTION OF KARATE CLUB NETWORK COMMUNITIES BY DYNAMICAL CLUSTERING OF OCR-HK COUPLED OSCILLATORS:
dx-ifdt = omega-i(t) + (K/Sum-j load-ijralpha) * Sum-j [ load-ijAalpha * sin(x-j - x-i) * exp(-|x-j - x-i]) ]

2) SETUP INITIAL FREQUENCIES

g -

frequencies of nodes oscillators

. Bt

U
(=
w
-

R(t) & alpha(t)
0.784 SISTARTDYNAMICS SR | _) 444
L
frequency-plot Pens
2.9

time (alpha)

@ —
N of nodes o ]E@
1) SETUP NETWORK 34 S :

- Colors of nodes are proportional to their oscillator's frequencies.
- Different nodes shapes indicates the two “a-priori” communities of the real network.

% ot - Kis the coupling parameter of the oscillators system.

NODES: MOVE(1click) - DEGREE(2clicks) EI e - Ris the order parameter (R~1: synchronized oscillators, R<1: not-synchronized oscillators)
@

- Over each node i (with a degree k-i) is defined a dynamical oscillator x-i.

- Each link has a load-ij equal to its betweenness.

- Alphais a tuning parameter which decreases in time (with an alpha-step) and allows the network to
progressively de-synchronize into communities (dynamical clustering) starting from a completely synchronized
state (for alpha = 0).

- The natural frequencies omega-i change in time following the HK dynamics (at each step they assume the
average omega-j value of the neighbors' which satisfy |x-i - x-j| < confidence-bound )




OCR-HK Tests on real networks: Chesapeake Bay food web

OCR-HK - FOOD WEB - N=33 - sigma=5.0 - Uniform IC - Cbound=0.005 - 1run
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OCR-HK Tests on computer generated random trial networks
with increasing zout (N=128, <k>=16, 4 communities)
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Dynamical Clustering on random trial networks

Sensitivity test

- OCR-HK
n-u Q-optimization
o0 OCR

a— GN

see also L.Danon, A.Diaz-Guilera, J.Duch and
A.Arenas J.of Stat.Mech.: Theory and Exp. (2005)

Ll I Ll L Ll
very good sen

L L1 A, 1o,

) 6 7
average number ot inter-community edges per node ( z

out )



Sensitivity for different values of a-step and confidence bound

OCR-HK Sensitivity for a set of 10 trial networks (N=128, k=16, 4 Com. of 32 nodes)
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Sensitivity tests with other dynamical systems

(Kuramoto, Rossler, Circle-Map)
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Dynamical Clustering on random trial networks

Computational cost

1.initial betwenness calculation: O(N?)
+

2.dynamical clustering evolution time: O(N'-7°)

very low global

, computational cost

O(~N?)

J
L.Danon et al., J.of Stat. Mech.: Theory and Exp. (2005)
JEE R II T T T TTTI II | N P B L B II| 1. Author Ref. Label Order
3 Eckmann & Moses [13] EM O(m{k?))
0 01 6 2 N1 76 /.' Zhou & Lipowsky [14] ZL O(n®)
o = 2 7 Latapy & Pons [15] LP O(n®)
y - Newman [24) NF O(nlog?n)
© ; Newman & Girvan [25] NG O(m®n)
E 7 Girvan & Newman [32] GN O(n*m)
= e Guimer et al. [27, [43] SA parameter dependent
- ‘ Duch & Arenas [31] DA O(n*logn)
o 7 Fortunato et al. [33] FLM O(n*)
O 7 Radicchi et al. [34] RCCLP O(n?)
/.’ Donetti & Muiioz | [35 36] | DM/DMN O(n?)
~ Bagrow & Bollt [37] BB O(n®)
/ Capocci et al. (3] Ccscce O(n?)
Wu & Huberman [39] WH O(n +m)
LTl I lll| O S e o A L | Palla et al. [40] PK O(exp(n))
Reichardt & Bornholdt [41] RB parameter dependent

N

The best identification methods scales
with the network size as O(Nlog?N)



Summary

 The problem of finding the best modular subdivision of a
network is fundamental but it is also a formidable task

* Divisive topological methods have a good sensitivity but
have also an high computational cost

« We developed a new algorithm based on a dynamical
clustering tecnique that shows a very high sensitivity both for
real and trial networks, and at the same time is very fast

« [t makes an interesting bridge between researches in
complex network and those in synchronization of dynamical
systems

 Further investigations are in progress and regard the
application of our algorithm to larger real networks (also
weighted and/or directed ones) and to networks with
overlapping or nested communities
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Further Tests with other dynamical systems (in progress...)

AVT algorithm:
AFT algorithm:
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fixed in time
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Heigselmann-Krause Dynamics: the OCR-HK model

The Hegselmann-Krause (HK) opinion dynamics* is based on the presence

of a parameter e, called “confidence bound”, which expresses the range of
compatibility of the opinions.

The 1-D opinion space is represented by the points of a [0,1] line, where
the opinions are uniformly distributed:

—0—0—0—00O—0—0—0—0—00—

0 f\’— 1
g «———confidence bound

At each step, one chooses at random one opinion and checks how

many opinions are compatible with him, i.e. are inside the confidence
bound...

...at the next step, the agent takes the average opinion of its
compatible neighbours...

*R. Hegselmann and U. Krause, Journal of Articial Societies and Social Simulation 5,
issue 3, paper 2 (jasss.soc.surrey.ac.uk) (2002);
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OCR-HK: Dynamical Clusterlng
Algorithm

istantaneous frequencies
(opinion changing rates)

loads (betw eennesses)

tuning p aram eter

o G o X .x . * -
£(0)= 0,00+ e 3B L5 sin(x, —x,) e P =1 N
2 ll] JEK;
JeK;

neighbours of node -1 in the selected netwrok
mtrinsic frequencies,

updated with HK dynamics

1.We start at a=0 from a state with uniformly distributed
frequencies which rapidly synchronize (since we set 0>0);

2.\We let o to decrease in time during a single run and we look
desynchronizes and we look for clusters in frequency;

3.We repeat the procedure for several runs, with different initial
frequency distributions, then we select the configuration with
the highest score of modularity Q  [Netlege <<=




